DESIGN REPORT ATMOSPHERIC WATER GENERATOR WATER FROM AIR: TEAM 5 PDF

Title DESIGN REPORT ATMOSPHERIC WATER GENERATOR WATER FROM AIR: TEAM 5
Author Kaung Myat Thu
Pages 62
File Size 7.3 MB
File Type PDF
Total Downloads 395
Total Views 761

Summary

DESIGN REPORT ATMOSPHERIC WATER GENERATOR WATER FROM AIR: TEAM 5 Ben Niewenhuis - EE Chris Shepperly - ME Ryan Van Beek - ME Eric Van Kooten – ME 9 May 2012 © 2012 Team 5: Water from Air, Calvin College Executive Summary The goal of this senior design project is to design and prototype an atmospheri...


Description

Accelerat ing t he world's research.

DESIGN REPORT ATMOSPHERIC WATER GENERATOR WATER FROM AIR: TEAM 5 Kaung Myat Thu

Related papers

Download a PDF Pack of t he best relat ed papers 

experiment al and numerical invest igat ion of HDH desalinat ion unit hesham helaly

Gene St rehlow (2) Building and Syst em Analyt ics Dermot McMorrow (18) Mit subishi Elect ric Canada Muhammed Nihal Ch gurpanchpal t aggar

DESIGN REPORT ATMOSPHERIC WATER GENERATOR WATER FROM AIR: TEAM 5

Ben Niewenhuis - EE Chris Shepperly - ME Ryan Van Beek - ME Eric Van Kooten – ME 9 May 2012

© 2012 Team 5: Water from Air, Calvin College

Executive Summary The goal of this senior design project is to design and prototype an atmospheric water generator, a device which produces drinkable water from humid air. Special emphasis is given to energy efficiency and compatibility with renewable energy sources. This project is the culmination of the engineering program at Calvin College. It is conducted within the context of a two-semester course which covers all aspects of project development and management. The following report explores the feasibility of the proposed design as well as specifying components of the design. After careful research and testing, Team 5 has concluded that wet desiccation is not a practical process for atmospheric water generation. The prototype works and is capable of producing 0.72 liters of water per day with significant potential for improvement. However, one of the metrics used to compare this unit to comparable units is the water per unit energy. Water From Air can produce 72.1 mL of water per kW-hr; Ecoloblue, a leading competitor, can produce 1031 mL of per kW-hr. Given this factor of 10 difference, Team 5 has concluded that this design is impractical for atmospheric water generation.

i

Table of Contents 1.

Introduction ............................................................................................................................. 1 1.1.

Background ...................................................................................................................... 1

1.2.

Team Members ................................................................................................................. 1

1.2.1.

Ben Niewenhuis ........................................................................................................ 1

1.2.2.

Chris Shepperly......................................................................................................... 1

1.2.3.

Ryan Van Beek ......................................................................................................... 1

1.2.4.

Eric Van Kooten ....................................................................................................... 2

1.3. 2.

3.

4.

Problem Statement ........................................................................................................... 2

Constraints ............................................................................................................................... 2 2.1.

Requirements .................................................................................................................... 2

2.2.

Design Objectives ............................................................................................................ 3

2.3.

Deliverables ...................................................................................................................... 3

Design Norms .......................................................................................................................... 3 3.1.

Transparency .................................................................................................................... 4

3.2.

Stewardship ...................................................................................................................... 4

3.3.

Integrity ............................................................................................................................ 4

3.4.

Trust ................................................................................................................................. 4

Design Evaluation.................................................................................................................... 4 4.1.

Dehumidification .............................................................................................................. 4

4.1.1.

Refrigeration ............................................................................................................. 5

4.1.2.

Pressure ..................................................................................................................... 5

4.1.3.

Combination.............................................................................................................. 8

4.1.4.

Wet Desiccation ........................................................................................................ 8

4.1.5.

Decision .................................................................................................................. 11

4.2.

Brine ............................................................................................................................... 12

4.2.1.

Corrosion................................................................................................................. 12

4.2.2.

Cost ......................................................................................................................... 12

4.2.3.

Safety ...................................................................................................................... 13 ii

4.2.4. 5.

System Architecture .............................................................................................................. 14 5.1.

System Structure ............................................................................................................ 14

5.1.1.

Frame ...................................................................................................................... 14

5.1.1.

Air Blower Shelf ..................................................................................................... 15

5.1.2.

Upper and Lower Shelves ....................................................................................... 15

5.2.

Process ............................................................................................................................ 15

5.2.1.

Airflow Loop .......................................................................................................... 16

5.2.2.

Brine Loop .............................................................................................................. 17

5.2.3.

Condensation Loop ................................................................................................. 20

5.1.

6.

Decision .................................................................................................................. 14

Electronics ...................................................................................................................... 21

5.1.1.

Power ...................................................................................................................... 21

5.1.2.

Sensor ...................................................................................................................... 23

5.1.3.

Control .................................................................................................................... 26

Prototype Operation ............................................................................................................... 26 6.1.

Description of Operation ................................................................................................ 26

6.1.1.

Batch Process .......................................................................................................... 26

6.1.2.

Manual Switches ..................................................................................................... 27

6.2.

Operating Instructions .................................................................................................... 27

6.2.1.

Start-Up Routine ..................................................................................................... 27

6.2.2.

Shutdown Routine................................................................................................... 28

7.

Project Expenses .................................................................................................................... 28

8.

Testing ................................................................................................................................... 30 8.1.

Absorption Rate.............................................................................................................. 30

8.2.

Evaporation Rate ............................................................................................................ 31

8.3.

Prototype ........................................................................................................................ 32

8.3.1.

Envirotronics ........................................................................................................... 32

8.3.2.

Steelcase Inc............................................................................................................ 34

8.3.3.

Produced Water Quality.......................................................................................... 35

8.3.4.

Power Requirements ............................................................................................... 35

8.4.

Control System ............................................................................................................... 36 iii

8.5.

9.

Further Testing ............................................................................................................... 36

8.5.1.

Envirotronics ........................................................................................................... 36

8.5.2.

Steelcase Inc............................................................................................................ 37

Project Design Improvements ............................................................................................... 37 9.1.

Financial-Based Improvements ...................................................................................... 37

9.2.

Time-Based Improvements ............................................................................................ 38

10.

Conclusion ......................................................................................................................... 39

11.

Acknowledgements ............................................................................................................ 39

12.

Appendix ............................................................................................................................ 42

12.1.

Competitor Summary ................................................................................................. 42

12.2.

Decision Matrix .......................................................................................................... 42

12.3.

Experiment Setup ....................................................................................................... 43

12.4.

Experiment Data ......................................................................................................... 44

12.5.

EES Calculations for Pressure Dehumification .......................................................... 45

12.6.

EES Calculations for Desiccation Model ................................................................... 46

12.7.

Complete Project Expenses Table .............................................................................. 47

12.8.

Capacitive Sensor Circuit Reference .......................................................................... 48

12.9.

Temperature Sensor Circuit Reference....................................................................... 50

12.10.

Envirotronics Validation Certificate ........................................................................... 54

Table of Acronyms PPFS AWG WHO CaCl2 WBS MDF CFM EES

Project Proposal Feasibility Study Atmospheric Water Generator World Health Organization Calcium Chloride Work Breakdown Schedule Medium Density Fiberboard Cubic Feet per Minute Engineering Equation Solver

Table of Figures Figure 1: Dehumidification by Refrigeration Cycle ....................................................................... 5 Figure 2: Dehumidification by Pressurization ................................................................................ 6 Figure 3: Power Requirements for Pressure Dehumification. ........................................................ 8 iv

Figure 4: Dehumidification by Desiccation .................................................................................... 9 Figure 5: Research-Based Model .................................................................................................. 10 Figure 6: Results of the FEA analysis for the system’s frame ...................................................... 15 Figure 7: Block diagram of wet desiccation process .................................................................... 16 Figure 8: Candidate Locations for Sensor Placement ................................................................... 23 Figure 9: Humidity Sensor Circuit ................................................................................................ 24 Figure 10: Temperature Sensor Circuit......................................................................................... 25 Figure 11: Sensor Circuit Board Layout ....................................................................................... 25 Figure 12: Brine solution mass gain over time ............................................................................. 31 Figure 13: Temperature Curve for the Upper Tank ...................................................................... 32 Figure 14: Validation Graph of Envirotronics' Testing ................................................................ 34 Figure 15: Brine Concentration during Steelcase Testing ............................................................ 35 Figure 16: Experimental Setup ..................................................................................................... 43 Figure 17: EES Display for Pressure Dehumidification ............................................................... 45 Figure 18: EES Display for Desiccation Model ........................................................................... 46 Figure 19: PSpice Parametric Capacitive Sweep of Sensor Circuit ............................................. 48 Figure 20: Humidity Sensor Capacitance Response ..................................................................... 49 Figure 21: Sensor Capacitance Calculation .................................................................................. 49 Figure 22: Frequency to Relative Humidity Reference Chart ...................................................... 50 Figure 23: PSpice Voltage Sweep Simulation of Temperature Circuit ........................................ 50 Figure 24: Output Voltage vs. Ambient Temperature .................................................................. 51 Figure 25: Temperature Probe Calibration Results ...................................................................... 52 Figure 26: Temperature Circuit Calibration Mathcad Sheet (Screenshot) ................................... 53

Table of Tables Table 1: Energy Values from Compression Condensation Base Case ........................................... 7 Table 2: Reported Nominal Operating Conditions and Performance ........................................... 10 Table 3: EES Model Results for Representative Conditions ........................................................ 11 Table 4: Salt Cost Comparisons .................................................................................................... 13 Table 5: Brine Decision Summary................................................................................................ 14 Table 6: Component-wise Power Requirements of Prototype ...................................................... 22 Table 7: DC Power Supply Option Comparison .......................................................................... 22 Table 8: Main System Expenses. .................................................................................................. 28 Table 9: Breakdown of System Loop Expenses. .......................................................................... 29 Table 10: Summary of Design Features for Prominent Competition ........................................... 36 Table 11: Competitor Summary.................................................................................................... 42 Table 12: Desiccant Decision Matrix ........................................................................................... 42 Table 13: Recorded Project Expenses........................................................................................... 47 Table 14: Temperature Probe Calibration Data ............................................................................ 51 v

1. Introduction 1.1. Background Calvin College is a Christian Liberal Arts institution located in Grand Rapids, MI. It is one of the few Christian colleges in America that offers a full engineering major. Integrating Christian values and the Liberal Arts into engineering, Calvin’s program has a strong reputation for producing thoughtful and well-rounded engineers. This senior design project is the capstone course for the Calvin Engineering program. Two courses, Engineering 339 and 340, are coordinated around the project, covering various aspects of project management and design.

1.2. Team Members 1.2.1. Ben Niewenhuis Ben Niewenhuis hails from Battle Creek, Michigan, a product of St Phillip Catholic High School and the Battle Creek Area Math and Science Center. Active as a student and an athlete, Ben was particularly interested in the realms of math and science. He entered the Calvin College Engineering program in the fall of 2008, and has chose...


Similar Free PDFs