Ecuacion de continuidad de fluidos PDF

Title Ecuacion de continuidad de fluidos
Author Juan mejia
Course Termodinamica
Institution Universidad Tecnológica de Santiago
Pages 4
File Size 174.5 KB
File Type PDF
Total Downloads 49
Total Views 137

Summary

Download Ecuacion de continuidad de fluidos PDF


Description

Ecuación de continuidad de fluidos La ecuación de continuidad es un importante principio físico muy útil para la descripción de los fenómenos en los que participan fluidos en movimiento, es decir en la hidrodinámica. Para la formulación de la ecuación de continuidad de los fluidos se asumen un grupo de consideraciones ideales que no siempre se tienen en los fenómenos reales de movimientos de fluidos, de modo que en general, aunque la ecuación es clave para la interpretación de los fenómenos reales, los cálculos derivados de su uso serán siempre una aproximación a la realidad, sin embargo, en una buena parte de los casos con suficiente exactitud como para poder ser considerados como ciertos. Antes de entrar en el tema que nos ocupa debemos definir algunos conceptos importantes y útiles para la comprensión: 1.- Lineas de corriente: Para muchas aplicaciones resulta conveniente considerar el flujo total del fluido en movimiento como un manojo de corrientes muy finas (infinitesimales) que fluyen paralelas. Estas corrientes, que recuerdan hilos, se conocen como líneas de corriente. 2.- Flujo laminar: Cuando las líneas de corriente de un flujo nunca se cruzan y siempre marchan paralelas se le llama flujo laminar. En el flujo laminar siempre las líneas de corriente marchan en la misma dirección que la velocidad del flujo en ese punto. 3.- Flujo turbulento: En el flujo turbulento el movimiento del fluido se torna irregular, las lineas de corriente pueden cruzarse y se producen cambios en la magnitud y dirección de la velocidad de estas. 4.- Viscosidad: Este término se utiliza para caracterizar el grado de rozamiento interno de un fluido y está asociado con la resistencia entre dos capas adyacentes del fluido que se mueven una respecto a la otra.

Entrando en la ecuación de continuidad La ecuación de continuidad parte de las bases ideales siguientes: 1.- El fluido es incompresible. 2.- La temperatura del fluido no cambia. 3.- El flujo es continuo, es decir su velocidad y presión no dependen del tiempo. 4.- El flujo es laminar. No turbulento. 5.- No existe rotación dentro de la masa del fluido, es un flujo irrotacional. 6.- No existen pérdidas por rozamiento en el fluido, es decir no hay viscosidad.

ρ1A1v1Δt = ρ2A2v2Δt (ecuación 1) Si dividimos por Δt tenemos que: ρ1A1v1 = ρ2A2v2 (ecuación 2) La ecuación 2 se conoce como ecuación de continuidad.

Como hemos considerado que el fluido es incompresible entonces ρ1 = ρ2 y la ecuación de continuidad se reduce a:

A1v1 = A2v2 Es decir, el área de la sección transversal de un tubo, multiplicada por la velocidad del fluido es constante a todo lo largo del tubo. El producto Av, que tiene las dimensiones de volumen por unidad de tiempo se conoce como caudal.

Ecuación de Bernoulli La ecuación de Bernoulli describe el comportamiento de un fluído bajo condiciones variantes y tiene la forma siguiente:

Parámetros En la ecuación de Bernoulli intervienen los parámetros siguientes: 

: Es la presión estática a la que está sometido el fluido, debida a las moléculas que lo rodean

 

: Densidad del fluido. : Velocidad de flujo del fluido.

 

: Valor de la aceleración de la gravedad ( : Altura sobre un nivel de referencia.

en la superficie de la Tierra).

3 Aplicabilidad Esta ecuación se aplica en la dinámica de fluídos. Un fluído se caracteriza por carecer de elasticidad de forma, es decir, adopta la forma del recipiente que la contiene, esto se debe a que las moléculas de los fluidos no están rígidamente unidas, como en el caso de los sólidos. Fluidos son tanto gases como líquidos. Para llegar a la ecuación de Bernoulli se han de hacer ciertas suposiciones que nos limitan el nivel de aplicabilidad:   

El fluido se mueve en un régimen estacionario, o sea, la velocidad del flujo en un punto no varía con el tiempo. Se desprecia la viscosidad del fluido (que es una fuerza de rozamiento interna). Se considera que el líquido está bajo la acción del campo gravitatorio únicamente.

Efecto Bernoulli El efecto Bernoulli es una consecuencia directa que surge a partir de la ecuación de Bernoulli: en el caso de que el fluido flujo en horizontal un aumento de la velocidad del flujo implica que la presión estática decrecerá. Un ejemplo práctico es el caso de las alas de un avión, que están diseñadas para que el aire que pasa por encima del ala fluya más velozmente que el aire que pasa por debajo del ala, por lo que la presión estática es mayor en la parte inferior y el avión se levanta. Tubo de Venturi El caudal (o gasto) se define como el producto de la sección por la que fluye el fluído y la velocidad a la que fluye. En dinámica de fluídos existe una ecuación de continuidad que nos garantiza que en ausencia de manantiales o sumideros, este caudal es constante. Como implicación directa de esta continuidad del caudal y la ecuación de Bernoulli tenemos un tubo de Venturi. Un tubo de Venturi es una cavidad de sección estrecha, teniendo ahora una sección que

por la que fluye un fluído y que en una parte se . Como el caudal se conserva entonces tenemos

. Por tanto:

(2)

Si el tubo es horizontal entonces

, y con la condición anterior de las velocidades vemos que,

necesariamente, . Es decir, un estrechamiento en un tubo horizontal implica que la presión estática del líquido disminuye en el estrechamiento. Breve historia de la ecuación Los efectos que se derivan a partir de la ecuación de Bernoulli eran conocidos por los experimentales antes de que Daniel Bernoulli formulase su ecuación, de hecho, el reto estaba en encontrar la ley que diese cuenta de todos esto acontecimientos. En su obra Hydrodynamica encontró la ley que explicaba los fenómenos a partir de la conservación de la energía (hay que hacer notar la similitud entre la forma de la ley de Bernoulli y la conservación de la energía). Posteriormente Euler dedujo la ecuación para un líquido sin viscosidad con toda generalidad (con la única suposición de que la viscosidad era despreciable), de la que surge naturalmente la ecuación de Bernoulli cuando se considera el caso estacionario sometido al campo gravitatorio.

TORRICELLI El teorema de Torricelli es una aplicación del principio de Bernoulli y estudia el flujo de un líquido contenido en un recipiente, a través de un pequeño orificio, bajo la acción de la gravedad. A partir del teorema de Torricelli se puede calcular el caudal de salida de un líquido por un orificio. "La velocidad de un líquido en una vasija abierta, por un orificio, es la que tendría un cuerpo cualquiera, cayendo libremente en el vacío desde el nivel del líquido hasta el centro de gravedad del orificio":

es la velocidad teórica del líquido a la salida del orificio es la velocidad de aproximación. es la distancia desde la superficie del líquido al centro del orificio. es la aceleración de la gravedad Para velocidades de aproximación bajas, la mayoría de los casos, la expresión anterior se transforma en:

es la velocidad real media del líquido a la salida del orificio es el coeficiente de velocidad. Para cálculos preliminares en aberturas de pared delgada puede admitirse 0.95 en el caso más desfavorable. tomando =1 Experimentalmente se ha comprobado que la velocidad media de un chorro de un orificio de pared delgada, es un poco menor que la ideal, debido a la viscosidad del fluido y otros factores tales como la tensión superficial, de ahí el significado de este coeficiente de velocidad....


Similar Free PDFs