Generalidades de la fisica PDF

Title Generalidades de la fisica
Course Fisica
Institution Universidad Nacional Autónoma de Honduras
Pages 37
File Size 2 MB
File Type PDF
Total Downloads 1
Total Views 138

Summary

Download Generalidades de la fisica PDF


Description

1

Centro espacial Kennedy, en Florida. En las instalaciones de servicio de cargas peligrosas los trabajadores observan el Mars Exploration Rover-2 (MER-2) subir por la rampa para probar su movilidad y facilidad de maniobra. Los científicos y los ingenieros aplican el método científico para verificar que el vehículo puede realizar tareas semejantes a las requeridas en la exploración de Marte. (Foto de la NASA.)

I. Introducción. El conocimiento de la física es esencial para comprender el mundo. Ninguna otra ciencia ha intervenido de forma tan activa para revelarnos las causas y efectos de los hechos naturales. Basta mirar al pasado para advertir que la experimentación y el descubrimiento forman un continuum que corre desde las primeras mediciones de la gravedad hasta los más recientes logros en la conquista del espacio. Al estudiar los objetos en reposo y en movimiento, los científicos han podido deducir las leyes fundamentales que tienen amplias aplicaciones en ingeniería mecánica. La investigación de los principios que rigen la producción de calor, luz y sonido ha dado paso a incontables aplicaciones que han hecho nuestra vida más cómoda y nos han permitido convivir mejor con nuestro entorno. La investigación y el desarrollo en las áreas de la electricidad, el magnetismo y la física atómica y nuclear han desembocado en un mundo moderno que habría sido inconcebible hace tan sólo 50 años. Es difícil imaginar siquiera un producto de los que disponemos hoy día que no suponga la aplicación de un principio físico. Ello significa que, independientemente de la carrera que se haya elegido, es indispensable entender la física, al menos hasta cierto punto. Es verdad que algunas ocupaciones y profesiones no requieren una comprensión tan profunda de ella como la que exigen las ingenierías, pero la realidad es que en todos los campos de trabajo se usan y aplican sus conceptos. Dotado de sólidos conocimientos de mecánica, calor, sonido y electricidad, el lector contará con los elementos necesarios para cimentar casi cualquier profesión. Además, si antes o después de graduarse le fuera necesario cambiar de carrera, sabrá que cuenta con un conocimiento básico de ciencias y matemáticas en general. Si toma con seriedad este curso y dedica a su estudio una dosis especial de tiempo y energía, tendrá menos problemas en el futuro. Así, en los cursos posteriores y en el trabajo podrá viajar sobre la cresta de la ola en lugar de mantenerse simplemente a flote en un mar tormentoso. ¿Qué es la física? Aun cuando haya estudiado la materia en secundaria, es probable que sólo tenga una vaga idea de lo que realmente significa la física y en qué se diferencia, por ejemplo, de la ciencia. Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

2

Para nuestros propósitos, las ciencias pueden dividirse en biológicas y físicas. Las ciencias biológicas se ocupan de los seres vivos, en tanto que las físicas tienen como objeto de estudio la parte no viva de la naturaleza. “La física puede definirse como la ciencia que investiga los conceptos fundamentales de la materia, la energía y el espacio, así como las relaciones entre ellos.” De acuerdo con esta amplia definición, no hay fronteras claras entre las ciencias físicas, lo cual resulta evidente en áreas de estudio como la biofísica, la fisicoquímica, la astrofísica, la geofísica, la electroquímica y muchas otras especialidades. El objetivo es brindar una introducción al mundo de la física, con un énfasis en las aplicaciones. Con ello, el vasto campo de esta disciplina se simplifica a los conceptos esenciales subyacentes en todo conocimiento técnico. Estudiará usted mecánica, calor, luz, sonido, electricidad y estructura atómica. El tema fundamental de todos ellos, y probablemente el más importante para el alumno principiante es la mecánica. La mecánica se refiere a la posición (estática) y al movimiento (dinámica) de la materia en el espacio. La estática es el estudio de la física aplicado a los cuerpos en reposo. La dinámica se ocupa de la descripción del movimiento y sus causas. En ambos casos, el ingeniero o técnico se encarga de medir y describir las cantidades físicas en términos de causa y efecto. Un ingeniero, por ejemplo, aplica los principios de la física para determinar qué tipo de estructura será más eficaz en la construcción de un puente. Su interés se centra en el efecto de las fuerzas. Si un puente terminado llegara a fallar, la causa de la falla requeriría ser analizada para aplicar ese conocimiento a las construcciones futuras de ese tipo. Es importante señalar que el científico define como causa la sucesión de hechos físicos que desembocan en un efecto. ¿Qué Importancia tienen las matemáticas? Las matemáticas sirven para muchos fines. Son a la vez filosofía, arte, metafísica y lógica. Sin embargo, todos estos aspectos se subordinan a su función principal: son una herramienta para el científico, el ingeniero o el técnico. Una de las mayores satisfacciones que brinda un primer curso de física es que se cobra mayor conciencia de la importancia de las matemáticas. Un estudio de física revela aplicaciones concretas de las matemáticas básicas. Supongamos que se desea predecir cuánto tarda en detenerse un automóvil que se desplaza con cierta rapidez. Primero es necesario controlar cuantas variables sea posible. En las pruebas, buscará que cada frenado sea uniforme, de modo que la rapidez media se aproxime a la mitad de la rapidez inicial. Expresado en símbolos esto puede escribirse:

También se controlarán las condiciones y la pendiente de la carretera, el clima y otros parámetros. En cada prueba se registrará la rapidez inicial (vi), la distancia a la que se detiene el vehículo ( x) y el tiempo en que lo hace (t). También puede tomar nota de la rapidez inicial, del cambio de rapidez, así como de la distancia y el tiempo necesarios para detener el automóvil.

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

3

Cuando todos estos factores se han registrado, los datos sirven para establecer una relación tentativa. No es posible hacer esto sin usar las herramientas que ofrecen las matemáticas. Con base en la definición de rapidez como la distancia recorrida por unidad de tiempo se observa que la distancia de frenado, x en nuestro ejemplo, puede ser producto de la velocidad media vi/2 multiplicada por el tiempo, t. La relación tentativa podría ser

Obsérvese que hemos usado símbolos para representar los parámetros importantes y las matemáticas para expresar su relación. Esta proposición es una hipótesis viable. A partir de esta ecuación es posible predecir la distancia a la que se detendrá cualquier vehículo con base en su rapidez inicial y el tiempo de frenado. Cuando una hipótesis se ha aplicado el suficiente número de veces para tener un grado de seguridad razonable de que es verdadera, se le llama teoría científica. En otras palabras, cualquier teoría científica no es más que una hipótesis viable que ha resistido la prueba del tiempo. Por tanto, podemos damos cuenta de que las matemáticas son útiles para obtener fórmulas que nos permiten describir los hechos físicos con precisión. Las matemáticas adquieren mayor relevancia aun en la resolución de esas fórmulas con cantidades específicas. Por ejemplo, en la fórmula anterior sería relativamente fácil hallar los valores de x, v y t cuando se conocen las otras cantidades. Sin embargo, muchas relaciones físicas implican mayores conocimientos de álgebra, trigonometría e incluso cálculo. La facilidad con que pueda deducir o resolver una relación teórica depende de sus conocimientos de matemáticas.

Actividad 1. De forma individual hacer una investigación de los siguientes temas: 1. Que es la Física. 2. Cuál es el campo de estudio de la Física. 3. Explique las diferentes ramas de la Física. 4. Explique cuál es la relación entre la física y otras ciencias. 5. Enliste 5 ejemplos del uso de la física en su vida diaria.

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

4

II. Mediciones técnicas y vectores. Objetivos Cuando termine de estudiar este capítulo el alumno: 1. Escribirá las unidades básicas de masa, longitud y tiempo en unidades del SI y del Sistema Usual en Estados Unidos (SUEU). 2. Definirá y aplicará los prefijos del SI que indican múltiplos de las unidades básicas. 3. Realizará la conversión de una unidad a otra para la misma cantidad, a partir de las definiciones necesarias. 4. Definirá una cantidad vectorial y una cantidad escalar, y dará ejemplos de cada una de ellas. 5. Determinará las componentes de un vector específico. 6. Encontrará la resultante de dos o más vectores. La aplicación de la física, ya sea en el taller o en un laboratorio técnico, requiere siempre algún tipo de mediciones. Un mecánico automotriz puede medir el diámetro o vaso de un cilindro de motor. Los técnicos en refrigeración tal vez necesiten hacer mediciones de volumen, presión y temperatura. Los electricistas emplean instrumentos para medir la resistencia eléctrica y la comente, y los ingenieros mecánicos se interesan en los efectos de fuerzas cuyas magnitudes deben calcularse con precisión. En realidad, es difícil imaginar una ocupación donde no se requiera la medición de alguna cantidad física. En el proceso de realizar mediciones físicas, con frecuencia hay interés tanto en la dirección como en la magnitud de una cantidad en particular. La longitud de un poste de madera se determina por el ángulo que forma con la horizontal. La eficacia de una fuerza para producir un desplazamiento depende de la dirección en que ésta se aplica. La dirección en la cual se mueve una banda transportadora es, con frecuencia, tan importante como la rapidez a la que se desplaza. Tales cantidades físicas, como desplazamiento, fuerza y velocidad, son comunes en el campo de la industria. En este capítulo se presenta el concepto de vectores, el cual permite estudiar tanto la magnitud como la dirección de cantidades físicas. Cantidades físicas El lenguaje de la física y la tecnología es universal. Los hechos y las leyes deben expresarse de una manera precisa y consistente, de manera que un término determinado signifique exactamente lo mismo para todos. Por ejemplo, supongamos que alguien nos dice que el desplazamiento del pistón de un motor es 3.28 litros (200 pulgadas cúbicas). Debemos responder dos preguntas para entender esa afirmación: (1) ¿Cómo se midió el desplazamiento del pistón? y (2) ¿qué es un litro? El desplazamiento del pistón representa el volumen que el pistón desplaza o “expulsa” en su movimiento desde el fondo hasta la parte superior del cilindro. En realidad no se trata de un desplazamiento, en el sentido usual de la palabra, sino de un volumen. Un patrón de medida de volumen, que se reconoce fácilmente en todo el mundo, es el litro. Por tanto, cuando un motor tiene una etiqueta en la que se indica: “desplazamiento del pistón = 3.28 litros”, todos los mecánicos entienden de igual manera dicha especificación. En el ejemplo anterior, el desplazamiento del pistón (volumen) es un ejemplo de cantidad física. Cabe resaltar que esta cantidad fue definida mediante la descripción de su proceso de medición. En física, todas las cantidades Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

5

se definen en esta forma. Otros ejemplos de cantidades físicas son: longitud, peso, tiempo, rapidez, fuerza y masa. Una cantidad física se mide comparándola con un patrón previamente conocido. Por ejemplo, supongamos que se desea determinar la longitud de una barra metálica. Con los instrumentos adecuados se determina que la longitud de la barra es de cuatro metros. No es que la barra contenga cuatro cosas llamadas “metros”, sino simplemente que se ha comparado con la longitud de un patrón conocido como “metro”. La longitud también se podría representar como 13.1 pies o 4.37 yardas, si se usaran otras medidas conocidas. La magnitud de una cantidad física se define con un número y una unidad de medida. Ambos son necesarios porque, por sí solos, el número o la unidad carecen de significado. Con excepción de los números y fracciones puros, se requiere indicar la unidad junto con el número cuando se expresa la magnitud de cualquier cantidad. La magnitud de una cantidad física se especifica completamente con un número y una unidad; por ejemplo, 20 metros o 40 litros. En vista de que hay muchas medidas diferentes para la misma cantidad, se requiere idear la forma de tener un registro de la magnitud exacta de las unidades empleadas. Para hacerlo, es necesario establecer medidas estándares para magnitudes específicas. Un patrón es un registro físico permanente, o fácil de determinar, de la cantidad que implica una unidad de medición determinada. Por ejemplo, el patrón para medir la resistencia eléctrica, el ohm, se define por medio de una comparación con un resistor patrón, cuya resistencia se conoce con precisión. Por tanto, una resistencia de 20 ohms debe ser 20 veces mayor que la de un resistor patrón de 1 ohm. Hay que recordar que cada cantidad física se define indicando cómo se mide. Dependiendo del dispositivo de medición, cada cantidad puede expresarse en unidades diferentes. Por ejemplo, algunas unidades de distancia son metros, kilómetros, millas y pies, y algunas unidades de rapidez son metros por segundo, kilómetros por hora, millas por hora y pies por segundo. Sin embargo, no importa cuáles sean las unidades elegidas, la distancia debe ser una longitud y la rapidez tiene que ser una longitud dividida entre un tiempo. Por tanto, longitud y longitud/tiempo constituyen las dimensiones de las cantidades físicas distancia y rapidez. Hay que observar que la rapidez se define en términos de dos cantidades más elementales (longitud y tiempo). Es conveniente establecer un número pequeño de cantidades fundamentales, como longitud y tiempo, a partir de las cuales se puedan derivar todas las demás cantidades físicas. De este modo, se afirma que la rapidez es una cantidad derivada y que la longitud o el tiempo son cantidades fundamentales. Si se reducen todas las medidas físicas a un número pequeño de cantidades con unidades básicas comunes, habrá menos confusión en su aplicación.

El Sistema Internacional El sistema internacional de unidades se llama Sisteme International d’Unités (SI) y, en esencia, es el mismo que se conoce como sistema métrico. El Comité Internacional de Pesas y Medidas ha establecido siete cantidades básicas, y ha asignado unidades básicas oficiales a cada cantidad. Un resumen de estas cantidades, con sus unidades básicas y los símbolos para representarlas, se presenta en la tabla 3.1. Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

6

Cada una de las unidades que aparecen en la tabla 3.1 tiene una definición medible específica, que puede duplicarse en cualquier lugar del mundo. De estas unidades básicas sólo una, el kilogramo, se define en general en términos de una muestra física individual. Esta muestra estándar se guarda en la Oficina Internacional de Pesas y Medidas, en Francia. Se han fabricado copias de la muestra original para su uso en otras naciones. El resto de las unidades se definen en términos de hechos físicos reproducibles y se determinan con precisión en todo el mundo.

Es posible medir muchas cantidades, tales como volumen, presión, rapidez y fuerza, que son combinaciones de dos o más cantidades o magnitudes fundamentales. Sin embargo, nadie ha encontrado jamás una medida que no pueda expresarse en términos de longitud, masa, tiempo, corriente, temperatura, intensidad luminosa o cantidad de sustancia. Las combinaciones de estas magnitudes se denominan magnitudes derivadas, y se miden en unidades derivadas. Algunas unidades derivadas comunes aparecen en la tabla 3.2.

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

7

Las unidades del SI no se han incorporado en forma total en muchas aplicaciones industriales. En Estados Unidos se está avanzando hacia la adopción de las unidades del SI. No obstante, las conversiones a gran escala son costosas, sobre todo en el caso de muchas aplicaciones mecánicas y térmicas; en vista de esto, la conversión total al sistema internacional tardará todavía algún tiempo. Por ello es necesario que nos familiaricemos con las viejas unidades de ese sistema para la medición de cantidades físicas. Las unidades del sistema usual en Estados Unidos (SUEU) para diversas cantidades importantes se indican en la tabla 3.3.

Hay que observar que, aun cuando el pie, la libra y otras unidades se usan con frecuencia en Estados Unidos, se han definido de nuevo en términos de los patrones de unidades del SI. Gracias a eso, actualmente todas las mediciones están basadas en los mismos patrones.

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

8

Medición de longitud y tiempo El patrón de la unidad de longitud del SI, el metro (m), originalmente se definió como la diezmillonésima parte de la distancia del Polo Norte al Ecuador. Por razones prácticas, esta distancia fue registrada en una barra de platino iridiado estándar. En 1960, el patrón se cambió para facilitar el acceso a una medida más precisa del metro, basada en un patrón atómico. Se acordó que un metro era exactamente igual a 1 650 763.73 longitudes de onda de la luz rojo-anaranjada del kriptón 86. Se eligió el número de modo que el nuevo patrón se aproximara al antiguo patrón. Sin embargo, la adopción de este patrón tampoco estuvo exenta de problemas. La longitud de onda de la luz emitida por el criptón era incierta debido a que el proceso tiene lugar dentro del átomo, durante la emisión. Además, el desarrollo del láser estabilizado permitió medir una longitud de onda con mucha mayor precisión, en términos de tiempo y velocidad de la luz. En 1983 se adoptó el patrón más reciente para el metro (y probablemente el definitivo): Un metro es la longitud de la trayectoria que recorre una onda luminosa en el vacío durante un espacio de tiempo de 1/299 792 458 segundos. El nuevo patrón del metro es más preciso, y tiene además otras ventajas. Su definición depende del patrón de tiempo (s) y éste se basa en un valor común de la velocidad de la luz. En la actualidad se considera que la velocidad de la luz es exactamente: c = 2.99792458 X 10 8 m/s (exacta por definición) Tiene sentido asignar un valor común a la velocidad de la luz porque, de acuerdo con la teoría de Einstein, la velocidad de la luz es una constante fundamental. Más aún, cualquier refinamiento futuro del patrón para medir el tiempo mejorará automáticamente el patrón para la longitud. Por supuesto, en general no es necesario saber la definición exacta de longitud para llevar a cabo mediciones prácticas y precisas. Gran número de herramientas, como los escalímetros sencillos en forma de regla o calibrador, se gradúan de acuerdo con el patrón de medida. La definición original de tiempo se basó en la idea del día solar, definido como el espacio de tiempo transcurrido entre dos apariciones sucesivas del Sol sobre un determinado meridiano de la Tierra. Así pues, un segundo era 1/86 400 del día solar medio. No es difícil imaginar las dificultades e incongruencias a las que daba lugar dicho patrón. En 1967, el patrón de tiempo del SI quedó definido de la siguiente forma: Un segundo representa el tiempo necesario para que el átomo de cesio vibre 9 192 631 770 veces. Por tanto, el patrón atómico de un segundo es el periodo de vibración de un átomo de cesio. Los mejores relojes de cesio son tan precisos que no se adelantan ni se atrasan más de 1 segundo en 300 000 años.

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

9

Debido a que esta medida de tiempo tiende a imponerse a la del día solar medio, la National Bureau of Standards suma periódicamente a la hora un salto de un segundo, por lo general una vez al año, el 31 de diciembre. Por tanto, el último minuto de cada año tiene a menudo 61 segundos, en vez de 60 segundos. Otra ventaja del sistema métrico sobre otros sistemas de unidades es el uso de prefijos para indicar los múltiplos de la unidad básica. La tabla 3.4 define los pref...


Similar Free PDFs