Goldstein, Tomsom, Milikan - experimentos y aportes de cada científico con fechas. PDF

Title Goldstein, Tomsom, Milikan - experimentos y aportes de cada científico con fechas.
Course QUÍMICA FARMACEUTICA I
Institution Universidad Central del Ecuador
Pages 4
File Size 200.8 KB
File Type PDF
Total Downloads 48
Total Views 116

Summary

Química es la ciencia que estudia la estructura, propiedades y transformaciones de la materia (y las leyes que rigen estas transformaciones) a partir de su composición atómica". En conclusión Química es la ciencia que estudia la composición de la materia y los cambios que en ella ocurren. Química es...


Description

(El nombre de rayos catódicos fue introducido por el investigador alemán Eugen Goldstein, quien además demostró que las propiedades de esos rayos no dependían del material de que estuviera hecho el cátodo.) 1. Para medir la velocidad de los rayos catódicos, Thomson los hacía pasar por la combinación de un campo eléctrico y uno magnético, producidos por un par de placas conectadas a una batería y por un par de electroimanes, respectivamente. Tanto la fuerza eléctrica como la magnética ejercidas sobre las supuestas partículas eran directamente proporcionales a la relación entre su carga y su masa. Sin embargo, la fuerza magnética depende, además, de la velocidad. Con este principio, Thomson ajustaba ambos campos para compensar con el segundo la deflección ocasionada por el primero. En estas condiciones, conocer el cociente de los campos era medir la velocidad. Como información adicional, el experimento permitía medir la relación entre la carga y la masa de las partículas en cuestión.

Figura 2. Tubo de rayos catódicos. Los electrones emitidos por el cátodo (C) son acelerados por el campo eléctrico hacia el ánodo (A) que deja pasar algunos por un orificio central. La trayectoria de este haz es afectada por la acción de un campo magnético y uno eléctrico. J.J. Thomson buscaba cancelar esos efectos para determinar la velocidad de los electrones. Los resultados del trabajo de Thomson indicaban que la velocidad de los rayos con los que él trabajaba era, aproximadamente, diez veces menor que la de la luz. Sin embargo, lo que más llamó su atención es que la relación carga/masa obtenida era mil veces mayor que la esperada para iones. Este resultado sugería que, si los rayos catódicos tenían algún origen atómico, se trataba de partículas (los electrones) mil veces más ligeras que el átomo de hidrógeno. Estas partículas resultaron ser los electrones. 2. En 1886, Eugen Goldstein (1850-1930) observó que en un tubo de rayos catódicos, con el ánodo perforado, se generaba una corriente de partículas moviéndose desde el cátodo hacia el ánodo. Estos rayos positivos proceden de átomos contenidos en el tubo que han perdido electrones. Al cambiar el gas contenido en el tubo se observa un cambio en la relación e/m de la partícula positiva. Estudios realizados con diferentes

gases demostraron que la la carga de los iones es múltiplo de un valor, la unidad de carga positiva, llamada protón.

3. Robert Andrews Millikan (1868 – 1953) recibió el premio Nobel de Física en 1923 por sus trabajos sobre la carga del electrón y sobre el efecto fotoeléctrico. Hoy en día Millikan es conocido especialmente por su experimento con gotas de aceite para la medición de la carga del electrón, experimento que ha sido repetido desde entonces por infinidad de estudiantes de Física. Descubrió que la carga eléctrica está “cuantizada”. Esto significa que cualquier valor de carga es múltiplo entero de una carga elemental, la del electrón En 1906, el físico norteamericano Robert Andrews Millikan atacó el problema repitiendo las medidas de H. A. Wilson con la ayuda de Harvey Fletcher, entonces estudiante de doctorado. Pronto se dieron cuenta que la masa de las gotitas variaba rápidamente debido a la evaporación. Para minimizar este efecto empezaron a utilizar gotitas de aceite. Otro cambio importante fue que, en lugar de observar el comportamiento global, Millikan se concentró en el comportamiento de gotas individuales al ser expuestas al efecto combinado de la gravedad y el campo eléctrico a la manera de Wilson. Los resultados mostraron que, si bien la carga inicial de cada gotita observada era enorme comparada con lo reportado por Thomson y su grupo, ésta fluctuaba de una a otra (para la misma gotita) en pasos discretos. Pronto se dieron cuenta de que estas diferencias eran múltiplos pequeños de una misma carga, aparentemente debidas a la pérdida o ganancia de algunos electrones por interacción con el medio en su trayecto. Luego de un simple análisis estadístico, esto los llevó a deducir 1.592 X l0-19 coulombs como la carga del electrón, que se denota comúnmente con la letra e. Millikan recibió el Premio Nobel en 1923 por este trabajo. Una vez determinada la carga del electrón, su masa pudo ser deducida utilizando la relación carga/masa medida por Thomson, que dio como resultado 9 X 10-31 kg. El propio Millikan dedujo el número de Avogadro,

simplemente dividiendo el faraday por e, que dio como resultado: 6.06 X 1023 moléculas por gramo-mol, y la masa del ion de hidrógeno a partir de la relación carga/masa deducida en electrólisis, que dio 1.66 X 10-27 kg. Es decir, la masa del electrón es casi 1/2000 de la del átomo que lo contiene. Un cálculo aritmético simple también permitió a Thomson deducir que las dimensiones de un átomo son del orden de 10-10 metros. RESUMEN Los estudios enfocados a entender la naturaleza del fluido eléctrico fueron motivados inicialmente por las descargas a través de gases, donde poco después y por primera vez El nombre de rayos catódicos fue introducido por el investigador alemán Eugen Goldstein, en tal labor se requirió el desarrollo de técnicas de vacío y de otras que dieron como resultado el tubo de rayos catódicos. El descubrimiento de que estos rayos están constituidos por partículas cargadas fue la labor de J. J. Thomson quien, antes de deducir la naturaleza elemental, necesitó demostrar que su masa era mucho menor que la de los átomos que las contenían y se lo demostró con ayuda de MIllikan.

¿Qué es la radiactividad?

La radiactividad es un fenómeno que se produce de manera espontánea en núcleos de átomos inestables emitiendo, mediante su desintegración en otro estable, gran cantidad de energía en forma de radiaciones ionizantes. El ritmo de emisión y el tipo y energía de las radiaciones emitidas son característicos de cada elemento radiactivo.

Radiactividad y experimento Rutherford y Soddy llevaban tiempo intentando entender el fenómeno de la radiactividad, descubierto por Becquerel y descrito por Marie y Pierre Curie. Y por fin habían conseguido demostrar que en los materiales radiactivos los átomos se desintegran, de modo que los átomos de un elemento radiactivo se transforman en otro elemento. Así que la transmutación, que habían buscado durante tantos siglos los alquimistas, ocurría de manera espontánea y natural. La idea era tan rompedora que Rutherford y Soddy evitaron añadirle prejuicios y hablaron de transformación en lugar de transmutación cuando en 1902 publicaron “La causa y naturaleza de la radiactividad”, que condensaba sus experimentos en la

teoría de la desintegración atómica. Con ella rompieron el dogma científico de que el átomo era indivisible (que es lo que significa átomo en griego). Ernest Rutherford (1871–1937) identificó los tres tipos principales de radiactividad: rayos alfa, rayos beta y rayos gamma. Y siguió estudiando la transmutación. Vio cómo aparecían átomos estables de plomo en medio de un mineral radiactivo de uranio. No había manera de saber cuándo se iba a transformar un átomo en concreto, pero Rutherford se fijó en que cualquier muestra (más grande o más pequeña) de un mismo elemento radiactivo tardaba exactamente el mismo tiempo en quedar reducida a la mitad. Ese tiempo, llamado semivida, convertía a los elementos radiactivos en perfectos cronómetros. Conociendo esa velocidad constante con la que el uranio se transforma en plomo y midiendo la cantidad de plomo que había en una roca de pechblenda (mineral de uranio), Rutherford y su colega Boltwood calcularon en 1907 que alguna de aquellas piedras tenía al menos 1.000 millones de años: ¡Era muchísimo más vieja de lo que entonces se pensaba que era la Tierra! Además de entender a fondo la radiactividad, Rutherford le dio su primera utilidad práctica (mucho antes que las aplicaciones médicas, bélicas o energéticas): calcular la edad de la Tierra. Rutherford usó la radiactividad para explorar el interior de los átomos. Junto con su alumno Geiger, disparó rayos alfa contra una finísima lámina de oro y observó atónito cómo alguna de esas partículas alfa rebotaba hacia atrás. Recuperado del impacto, en 1911 dedujo que aquello solo era posible si los átomos tenían un minúsculo núcleo, con carga positiva, que concentraba casi toda su masa. Había nacido el modelo atómico de Rutherford, perfeccionado luego por su alumno Bohr: esa imagen tan familiar del átomo, con los electrones girando alrededor de ese núcleo. En su laboratorio él siguió bombardeando átomos con rayos alfa, hasta que en 1919 consiguió transformar átomos de nitrógeno en oxígeno: se convirtió así en “el primer alquimista con éxito de la historia”. Aquella transmutación de nitrógeno en oxígeno fue la primera reacción nuclear artificial....


Similar Free PDFs