Introduction a Tensor Analysis PDF

Title Introduction a Tensor Analysis
Author Mades Almeida
Pages 304
File Size 14 MB
File Type PDF
Total Downloads 379
Total Views 749

Summary

Pavel Grinfeld Introduction to Tensor Analysis and the Calculus of Moving Surfaces Introduction to Tensor Analysis and the Calculus of Moving Surfaces Pavel Grinfeld Introduction to Tensor Analysis and the Calculus of Moving Surfaces 123 Pavel Grinfeld Department of Mathematics Drexel University Phi...


Description

Accelerat ing t he world's research.

Introduction a Tensor Analysis Mades Almeida

Related papers

Download a PDF Pack of t he best relat ed papers 

PhysICal ComPonenTs oF Tensors PhysICal ComPonenTs oF Tensors PhysICal ComPonenTs… kocouvi Agapi houanou Course Not es Tensor Calculus and Different ial Geomet ry Saeid Mollaei Principles of Different ial Geomet ry Necip Erdoğan

Pavel Grinfeld

Introduction to Tensor Analysis and the Calculus of Moving Surfaces

Introduction to Tensor Analysis and the Calculus of Moving Surfaces

Pavel Grinfeld

Introduction to Tensor Analysis and the Calculus of Moving Surfaces

123

Pavel Grinfeld Department of Mathematics Drexel University Philadelphia, PA, USA

ISBN 978-1-4614-7866-9 ISBN 978-1-4614-7867-6 (eBook) DOI 10.1007/978-1-4614-7867-6 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013947474 Mathematics Subject Classifications (2010): 4901, 11C20, 15A69, 35R37, 58A05, 51N20, 51M05, 53A05, 53A04 © Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The purpose of this book is to empower the reader with a magnificent new perspective on a wide range of fundamental topics in mathematics. Tensor calculus is a language with a unique ability to express mathematical ideas with utmost utility, transparency, and elegance. It can help students from all technical fields see their respective fields in a new and exciting way. If calculus and linear algebra are central to the reader’s scientific endeavors, tensor calculus is indispensable. This particular textbook is meant for advanced undergraduate and graduate audiences. It envisions a time when tensor calculus, once championed by Einstein, is once again a common language among scientists. A plethora of older textbooks exist on the subject. This book is distinguished from its peers by the thoroughness with which the underlying essential elements are treated. It focuses a great deal on the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation, and the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chap. 6—when the reader is ready for it. Part III of this book is devoted to the calculus of moving surfaces (CMS). One of the central applications of tensor calculus is differential geometry, and there is probably not one book about tensors in which a major portion is not devoted to manifolds. The CMS extends tensor calculus to moving manifolds. Applications of the CMS are extraordinarily broad. The CMS extends the language of tensors to physical problems with moving interfaces. It is an effective tool for analyzing boundary variations of partial differential equations. It also enables us to bring the calculus of variations within the tensor framework. While this book maintains a reasonable level of rigor, it takes great care to avoid a formalization of the subject. Topological spaces and groups are not mentioned. Instead, this book focuses on concrete objects and appeals to the reader’s geometric intuition with respect to such fundamental concepts as the Euclidean space, surface, length, area, and volume. A few other books do a good job in this regard, including [2, 8, 31, 46]. The book [42] is particularly concise and offers the shortest path to the general relativity theory. Of course, for those interested in relativity, Hermann

v

vi

Preface

Weyl’s classic Space, Time, Matter [47] is without a rival. For an excellent book with an emphasis on elasticity, see [40]. Along with eschewing formalism, this book also strives to avoid vagueness associated with such notions as the infinitesimal differentials dx i . While a number of fundamental concepts are accepted without definition, all subsequent elements of the calculus are derived in a consistent and rigorous way. The description of Euclidean spaces centers on the basis vectors Zi . These important and geometrically intuitive objects are absent from many textbooks. Yet, their use greatly simplifies the introduction of a number of concepts, including the metric tensor Zij D Zi  Zj and Christoffel symbol €ji k D Zi  @Zj =@Z k . Furthermore, the use of vector quantities goes a long way towards helping the student see the world in a way that is independent of Cartesian coordinates. The notation is of paramount importance in mastering the subject. To borrow a sentence from A.J. McConnell [31]: “The notation of the tensor calculus is so much an integral part of the calculus that once the student has become accustomed to its peculiarities he will have gone a long way towards solving the difficulties of the theory itself.” The introduction of the tensor technique is woven into the presentation of the material in Chap. 4. As a result, the framework is described in a natural context that makes the effectiveness of the rules and conventions apparent. This is unlike most other textbooks which introduce the tensor notation in advance of the actual content. In spirit and vision, this book is most similar to A.J. McConnell’s classic Applications of Tensor Calculus [31]. His concrete no-frills approach is perfect for the subject and served as an inspiration for this book’s style. Tullio Levi-Civita’s own The Absolute Differential Calculus [28] is an indispensable source that reveals the motivations of the subject’s co-founder. Since a heavy emphasis in placed on vector-valued quantities, it is important to have good familiarity with geometric vectors viewed as objects on their own terms rather than elements in Rn . A number of textbooks discuss the geometric nature of vectors in great depth. First and foremost is J.W. Gibbs’ classic [14], which served as a prototype for later texts. Danielson [8] also gives a good introduction to geometric vectors and offers an excellent discussion on the subject of differentiation of vector fields. The following books enjoy a good reputation in the modern differential geometry community: [3, 6, 23, 29, 32, 41]. Other popular textbooks, including [38, 43] are known for taking the formal approach to the subject. Virtually all books on the subject focus on applications, with differential geometry front and center. Other common applications include analytical dynamics, continuum mechanics, and relativity theory. Some books focus on particular applications. A case in point is L.V. Bewley’s Tensor Analysis of Electric Circuits And Machines [1]. Bewley envisioned that the tensor approach to electrical engineering would become a standard. Here is hoping his dream eventually comes true. Philadelphia, PA

Pavel Grinfeld

Contents

1

Why Tensor Calculus? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Part I Tensors in Euclidean Spaces 2

Rules of the Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 The Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Length, Area, and Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Scalars and Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 The Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Inner Products and Lengths in Linear Algebra . . . . . . . . . 2.6 The Directional Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 The Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 Differentiation of Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 11 11 13 14 14 15 15 17 18 19

3

Coordinate Systems and the Role of Tensor Calculus . . . . . . . . . . . . . . . . . . 3.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Why Coordinate Systems? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 What Is a Coordinate System? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Perils of Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 The Role of Tensor Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 A Catalog of Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.1 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.2 Affine Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.3 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.4 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.5 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.6 Relationships Among Common Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21 21 21 23 24 27 27 28 30 30 31 32 32 34 vii

viii

Contents

4

Change of Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 An Example of a Coordinate Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 A Jacobian Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 The Inverse Relationship Between the Jacobians . . . . . . . . . . . . . . . . . 4.5 The Chain Rule in Tensor Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Inverse Functions of Several Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 The Jacobian Property in Tensor Notation. . . . . . . . . . . . . . . . . . . . . . . . . 4.9 Several Notes on the Tensor Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9.1 The Naming of Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9.2 Commutativity of Contractions . . . . . . . . . . . . . . . . . . . . . . . . . 4.9.3 More on the Kronecker Symbol . . . . . . . . . . . . . . . . . . . . . . . . . 4.10 Orientation-Preserving Coordinate Changes . . . . . . . . . . . . . . . . . . . . . . 4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35 35 35 36 37 38 42 43 45 48 48 49 50 50 51

5

The Tensor Description of Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 The Position Vector R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 The Position Vector as a Function of Coordinates . . . . . . . . . . . . . . . . 5.4 The Covariant Basis Zi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 The Covariant Metric Tensor Zij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 The Contravariant Metric Tensor Z ij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 The Contravariant Basis Zi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8 The Metric Tensor and Measuring Lengths. . . . . . . . . . . . . . . . . . . . . . . . 5.9 Intrinsic Objects and Riemann Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.10 Decomposition with Respect to a Basis by Dot Product . . . . . . . . . . 5.11 The Fundamental Elements in Various Coordinates . . . . . . . . . . . . . . 5.11.1 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.11.2 Affine Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.11.3 Polar and Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . 5.11.4 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.12 The Christoffel Symbol €ijk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.13 The Order of Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.14 The Christoffel Symbol in Various Coordinates . . . . . . . . . . . . . . . . . . . 5.14.1 Cartesian and Affine Coordinates . . . . . . . . . . . . . . . . . . . . . . . 5.14.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.14.3 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.15 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53 53 53 54 55 56 57 58 59 60 60 62 62 63 65 66 67 71 72 72 72 72 73

6

The Tensor Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Definitions and Essential Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 Tensors of Order One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Tensors Are the Key to Invariance . . . . . . . . . . . . . . . . . . . . . .

75 75 75 76 76 76

Contents

6.4

6.5 6.6

6.7 6.8 6.9 6.10 6.11 6.12 6.13

ix

6.3.3 The Tensor Property of Zi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.4 The Reverse Tensor Relationship . . . . . . . . . . . . . . . . . . . . . . . 6.3.5 Tensor Property of Vector Components. . . . . . . . . . . . . . . . . 6.3.6 The Tensor Property of Z i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tensors of Higher Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.1 The Tensor Property of Zij and Z ij . . . . . . . . . . . . . . . . . . . . 6.4.2 The Tensor Property of ıji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Fundamental Properties of Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.1 Sum of Tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.2 Product of Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.3 The Contraction Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.4 The Important Implications of the Contraction Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Gradient Revisited and Fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Directional Derivative Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index Juggling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Equivalence of ıji and Zij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Effect of Index Juggling on the Tensor Notation . . . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

77 78 79 80 80 81 81 82 83 83 83 84 85 85 86 87 88 90 91 91

7

Elements of Linear Algebra in Tensor Notation . . . . . . . . . . . . . . . . . . . . . . . . 93 7.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2 The Correspondence Between Contraction and Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.3 The Fundamental Elements of Linear Algebra in Tensor Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.4 Self-Adjoint Transformations and Symmetry . . . . . . . . . . . . . . . . . . . . . 99 7.5 Quadratic Form Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.6 The Eigenvalue Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8

Covariant Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 A Motivating Ex...


Similar Free PDFs