Math 20d mathlab 2 PDF

Title Math 20d mathlab 2
Author Rain Tian
Course Introduction to Differential Equations
Institution University of California San Diego
Pages 13
File Size 836.7 KB
File Type PDF
Total Downloads 39
Total Views 138

Summary

Matlab2...


Description

Ex 2.1 (a, b) (c)>> dsolve('Dy=y/5','x') ans = C1*exp(x/5)

Ex 2.2 (a). >> f=@(x,y) (exp(-x)-y)*(exp(-x)+2+y) f= function_handle with value: @(x,y)(exp(-x)-y)*(exp(-x)+2+y) >> slopefield(f,[-10,10],[-10,10],40) >> hold on >> drawode(f,[-10,10],2,3) >> drawode(f,[-10,10],0,2) >> hold of 10

8 6

4

2

0

2

4 6

8

10 10

8

6

4

2

0

2

4

6

8

10

(b)The calculation with e is too complicated to get a value to help us imagine the solution. Direction field can fundamentally help us to visualize the solution (general).

Ex 2.3 >> f=@(x,y)x+2*y f= function_handle with value:

@(x,y)x+2*y >> slopefield(f,[-5,5],[-5,5],20) >> hold on >> drawode(f,[-5,5],0,-1/4) >> drawode(f,[-5,5],-1/4,-1/4) >> drawode(f,[-5,5],1/4,-1/4) >> drawode(f,[-5,5],0,0) >> hold of 5 4

3 2

1 0

1 2

3 4

5 5

4

3

2

1

0

1

2

3

4

5

As we can see from the plot, if the initial value is (0, -1/4), the solution would be a straight line, otherwise it is not. So initial value not being exactly (0, -1/4) would greatly afect the solution of diferential equation.

Ex 2.4 >> f=@(x,y) y-1 f= function_handle with value: @(x,y)y-1 >> slopefield(f,[-6,6],[-6,6],20) >> hold on >> drawode(f,[-6,6],1,1) >> drawode(f,[-6,6],0.9,1)

>> drawode(f,[-6,6],1,0.9) >> drawode(f,[-6,6],0.9,0.9) >> hold of 6

4

2

0

2

4

6 6

4

2

0

2

4

6

If the initial value is not (1,1), as seen from plot above, this would greatly afect the solution.

Ex 2.5 >> f=@(t,y) 2*(1-y) f= function_handle with value: @(t,y)2*(1-y) >> slopefield(f,[0,10],[-5,5],20)

5

4

3

2

1

0

1

2

3

4

5 0

1

2

3

4

5

6

7

8

9

10

5

6

7

8

9

10

Now when A=2 >> f=@(t,y) 2*(2-y) f= function_handle with value: @(t,y)2*(2-y) >> slopefield(f,[0,10],[-5,5],20) >> hold on >> slopefield(f,[0,10],[-5,5],20) >> hold on >> drawode(f,[0,10],3,3) >> drawode(f,[0,10],3,4) >> drawode(f,[0,10],5,7) 5

4

3

2

1

0

1

2

3

4

5 0

1

2

3

4

Now when A=4 >> f=@(t,y) 2*(4-y) f= function_handle with value: @(t,y)2*(4-y) >> slopefield(f,[0,10],[-5,5],20) >> hold on >> drawode(f,[0,10],3,3) >> drawode(f,[0,10],3,4) >> drawode(f,[0,10],5,7) >> hold of 5

4

3

2

1 0

1

2

3

4 5 0

1

2

3

4

5

6

7

8

9

10

As we can observe from the above plots, A should represents the temperature of surrounding environment at which the temperature of the object will eventually get to.

Ex 2.6 (1).dy/dt=0.4*(41-y) y(0)=-6 (2) A=41

(3) >> f=@(t,y) 0.4*(39-y) f= function_handle with value: @(t,y)0.4*(39-y) >> slopefield(f,[-10,40],[-20,40],50) >> hold on >> drawode(f,[-10,40],0,-6) >> hold of

40

30

20

10

0

10

20 10

5

0

5

10

15

2 0

25

30

35

40

Under the given condition, it takes around 13 hours to defrost the chicken breast.

(4) >> f=@(t,y) 0.4*(69-y) f= function_handle with value: @(t,y)0.4*(69-y) >> slopefield(f,[-10,40],[-10,70],50) >> hold on

>> drawode(f,[-10,40],0,-6)

70

60

50

40

30

20

10

0

10 1 0

5

0

5

10

1 5

20

2 5

30

3 5

40

As we can see from the graph, the curve intersects with y=39 at around t=2.5. So about 132.5=10.5 hours could be saved if the chicken breast is thawed on chicken counter instead

Ex 2.7 >> g=@(t,x,y) [2;-3] g= function_handle with value: @(t,x,y)[2;-3] >> phaseplane(g,[-5,5],[-5,5],20) >> hold on >> drawphase(g, 8, 2, 1) >> drawphase(g, 3, 5, 2) >> drawphase(g, 6, -1, -2) >> hold of

5

4

3 2

1

0

1

2

3 4

5 5

4

3

2

1

0

1

2

3

4

>> g=@(t,x,y) [4;-1] g= function_handle with value: @(t,x,y)[4;-1] >> phaseplane(g,[-5,5],[-5,5],20) >> hold on >> drawphase(g, 8, 2, 1) drawphase(g, 3, 5, 2) drawphase(g, 6, -1, -2) >> hold of 5

4

3

2

1

0

1

2

3

4

5 5

4

3

>> g=@(t,x,y) [4;3]

2

1

0

1

2

3

4

5

5

g= function_handle with value: @(t,x,y)[4;3] >> phaseplane(g,[-5,5],[-5,5],20) hold on drawphase(g, 8, 2, 1) drawphase(g, 3, 5, 2) drawphase(g, 6, -1, -2) hold of 5 4 3

2 1

0 1

2 3

4 5 5

4

3

2

1

0

1

2

3

4

5

So changing x’ and y’ to other constants values will change the overall slope rate (slope rate is associated with the multiplication of those two constant)

Ex 2.8 >> g=@(t,Y) [Y(2);-Y(1)] g= function_handle with value: @(t,Y)[Y(2);-Y(1)] >> phaseplane(g,[-10,10],[-10,10],40) >> hold onw >> drawphase(g, 20, 1, -3) >> drawphase(g, 14, 2, 5) >> drawphase(g, 10, 5, 5) >> hold of

10 8 6

4 2

0 2

4 6

8 10 10

8

6

4

2

0

2

4

6

8

10

Ex 2.9 >> f=@(x,y) x^2+y^3 f= function_handle with value: @(x,y)x^2+y^3 >> slopefield(f,[-20,20],[-20,20],40) >> hold on >> drawode(f,[-20,20],0,1) >> drawode(f,[-20,20],0,-5) >> drawode(f,[-20,20],5,5) >> drawode(f,[-20,20],0,0) >> hold of 20

15

10

5

0

5

10

15

20 20

15

10

5

0

5

10

15

20

>> g=@(t,Y) [1; Y(1)^2 + Y(2)^3]; phaseplane(g, [-10,10], [-10,10], 40) >> hold on >> drawphase(g,30,0,1) >> drawphase(g,30,0,5) >> drawphase(g,30,0,0) >> hold of 1 0 8 6 4

2 0 2

4 6 8

10 10

8

6

4

2

0

2

4

6

8

1 0

Phase portrait figure is a dynamic visualization of my directional field figure. The directional field depicts all the paths while phase portrait depicts only some t interval. Overall, the resulting curves match up.

Ex 2.10 (a)>> k=@(t,Y) [Y(1)*(1-Y(2));Y(2)*(Y(1)-1)] k= function_handle with value: @(t,Y)[Y(1)*(1-Y(2));Y(2)*(Y(1)-1)] >> phaseplane(k, [-1,5], [-1,5], 20)

5

4

3

2

1

0

1 1

0

1

2

3

4

5

Physically possible solutions only exist (in first quadrant) for both x and y greater than or equal to zero. (b) >> k=@(t,Y) [Y(1)*(1-Y(2));Y(2)*(Y(1)-1)] k= function_handle with value: @(t,Y)[Y(1)*(1-Y(2));Y(2)*(Y(1)-1)] >> phaseplane(k, [-1,5], [-1,5], 20) >> hold on >> drawphase(k,75,2,3) >> drawphase(k,75,1,2) >> drawphase(k,75,4,1) >> hold of (C)states as marked below. 5

4

3

2

1

0

1 1

0

1

2

3

4

5...


Similar Free PDFs