MCV4U Unit 3 Curve Sketching PDF

Title MCV4U Unit 3 Curve Sketching
Course Calculus and Vector
Institution High School - Canada
Pages 30
File Size 572.3 KB
File Type PDF
Total Downloads 579
Total Views 848

Summary

MCV4U Unit 3: CurveSketching1a. Given:𝑓(π‘₯) = π‘₯ 2 + 2π‘₯ βˆ’ 15To find the x-intercepts, I set y=0 and solved for x:𝑓(π‘₯) = π‘₯ 2 + 2π‘₯ βˆ’ 15 𝑓(π‘₯) = (π‘₯ + 5)(π‘₯ βˆ’ 3) π‘₯ + 5 = 0 π‘₯ =βˆ’ 5 π‘₯ βˆ’ 3 = 0 π‘₯ = 3To find the y-intercepts, I set x=0 and solved for y:𝑓(0) = 0 2 + 2(0) βˆ’ 15 𝑓(0) =βˆ’ 15 𝑦 =βˆ’ 15Therefore, for the f...


Description

MCV4U Unit 3: Curve Sketching 1a. Given: 2

𝑓(π‘₯) = π‘₯ + 2π‘₯ βˆ’ 15 To find the x-intercepts, I set y=0 and solved for x: 2

𝑓(π‘₯) = π‘₯ + 2π‘₯ βˆ’ 15 𝑓(π‘₯) = (π‘₯ + 5)(π‘₯ βˆ’ 3) π‘₯+ 5 = 0 π‘₯ =βˆ’ 5 π‘₯βˆ’ 3 = 0 π‘₯= 3 To find the y-intercepts, I set x=0 and solved for y: 2

𝑓(0) = 0 + 2(0) βˆ’ 15 𝑓(0) =βˆ’ 15 𝑦 =βˆ’ 15 2

Therefore, for the function 𝑓(π‘₯) = π‘₯ + 2π‘₯ βˆ’ 15, the x-intercepts are (-5,0) (3,0) and the y-intercept is (0,-15).

1b. Given: 𝑦=

π‘₯+10 π‘₯βˆ’5

To find the x-intercepts, I set y=0 and solved for x: 0 =

π‘₯+10 π‘₯βˆ’5

π‘₯ + 10 = 0 π‘₯ =βˆ’ 10 To find the y-intercepts, I set x=0 and solved for y: 𝑦=

π‘₯+10 π‘₯βˆ’5

𝑦=

0+10 0βˆ’5

𝑦 =βˆ’ 2 Therefore, for the function 𝑦 =

π‘₯+10 π‘₯βˆ’5

,

the x-intercepts is(-10,0) and the y-intercept is (0,-2).

2a. Given: 2

𝑦=

π‘₯ βˆ’3π‘₯+2 π‘₯βˆ’4

𝐷 = {π‘₯ Ο΅ 𝑅/π‘₯ β‰  4}

2b. Given: 3

2

𝑦 = 4π‘₯ + 7π‘₯ βˆ’ 13π‘₯ + 100 𝐷 = {π‘₯ Ο΅ 𝑅} 2c. Given: 𝑓(π‘₯) = 2π‘₯ βˆ’ 10 2π‘₯ βˆ’ 10 β‰₯ 0 π‘₯β‰₯ 5 𝐷 = {π‘₯ Ο΅ 𝑅/π‘₯ β‰₯ 5} 3a. Given: 𝑓(π‘₯) =

𝑓(π‘₯) =

1 3

5 2

(π‘₯ +π‘₯ ) 1 6

8

10

π‘₯ +2π‘₯ +π‘₯

𝑓(βˆ’ π‘₯) = 𝑓(βˆ’ π‘₯) =

1 6

8

10

(βˆ’π‘₯) +2(βˆ’π‘₯) +(βˆ’π‘₯) 1 6

8

10

π‘₯ +2π‘₯ +π‘₯ 1

βˆ’ 𝑓(π‘₯) =βˆ’

6

8

10

π‘₯ +2π‘₯ +π‘₯

This function is even because 𝑓(βˆ’ π‘₯) = 𝑓(π‘₯).

3b. Given: 5

3

𝑦=π‘₯ +π‘₯ + 7 5

3

𝑦 = (βˆ’ π‘₯) + (βˆ’ π‘₯) + 7 5

3

5

3

𝑦 =βˆ’ π‘₯ βˆ’ π‘₯ + 7 𝑦 =βˆ’ π‘₯ βˆ’ π‘₯ βˆ’ 7 This function is neither even nor odd because 𝑓(π‘₯) β‰  𝑓(βˆ’ π‘₯) β‰ βˆ’ 𝑓(π‘₯). 3c. Given: 𝑓(π‘₯) =

3 3

π‘₯+π‘₯

𝑓(βˆ’ π‘₯) = 𝑓(βˆ’ π‘₯) = 𝑓(βˆ’ π‘₯) = βˆ’ 𝑓(π‘₯) =

3 3

(βˆ’π‘₯)+(βˆ’π‘₯) 3 3

βˆ’π‘₯βˆ’π‘₯ βˆ’3 3

π‘₯+π‘₯ βˆ’3

3

π‘₯+π‘₯

This function is odd because 𝑓(βˆ’ π‘₯) =βˆ’ 𝑓(π‘₯).

4a. Given: 3

𝑦=

π‘₯ +5π‘₯βˆ’7 2

π‘₯ βˆ’3π‘₯βˆ’28 3

𝑦=

π‘₯ +5π‘₯βˆ’7 (π‘₯βˆ’7)(π‘₯+4)

π‘₯ = 7, π‘₯ =βˆ’ 4 Therefore, the vertical asymptotes are π‘₯ = 7 and π‘₯ =βˆ’ 4. 4b. Given: 𝑓(π‘₯) =

5

3

3

2

π‘₯ +4π‘₯ βˆ’4π‘₯+6 π‘₯ +2π‘₯ βˆ’5π‘₯βˆ’6

I tested x=1 as a factor first: 3

2

(βˆ’ 1) + 2(βˆ’ 1) βˆ’ 5(βˆ’ 1) βˆ’ 6 = 0 Thus, x-1 is a factor: 3

2

π‘₯ +2π‘₯ βˆ’5π‘₯βˆ’6 π‘₯βˆ’1 2

π‘₯ + π‘₯βˆ’ 6 (π‘₯ + 3)(π‘₯ βˆ’ 2) Thus, the vertical asymptotes are: π‘₯ =βˆ’ 3, π‘₯ = 2, π‘₯ = 1

5a. Given: 3

𝑦=

2

π‘₯ +2π‘₯ βˆ’6 2

π‘₯

There is no horizontal asymptote since the degree of the numerator is larger than that of the denominator. 5b. Given: 4

𝑦=

3

2

π‘₯ +3π‘₯ +π‘₯ βˆ’7 5

3

π‘₯ βˆ’3π‘₯ +8

The horizontal asymptote is y=0 because the degree of the denominator is larger than that of the numerator. 5c. Given: 2

𝑓(π‘₯) =

2π‘₯ 2

π‘₯ +3π‘₯βˆ’4

The horizontal asymptote is y=2, because the degree of the numerator and denominator is the same I divided the coefficients

2 1

for an answer of y=2.

6a. Given: 2

𝑓(π‘₯) = 4π‘₯ + 12π‘₯ βˆ’ 7 I first found the derivative of the given function: 𝑓(π‘₯) = 8π‘₯ + 12 To find the critical values, I set the derivative equal to zero and solved for x. I then substituted the x value into the original given function to find the y value: 8π‘₯ + 12 = 0 8π‘₯ =βˆ’ 12 π‘₯= 𝑓( 𝑓(

βˆ’3 2 βˆ’3 2

βˆ’12 8

=

) = 4(

βˆ’3 2 βˆ’3 2 ) 2

+ 12(

βˆ’3 ) 2

βˆ’ 7

) =βˆ’ 16

To find the intervals of increasing or decreasing, I made a table: Intervals

π‘₯<

βˆ’3 2

8π‘₯

8π‘₯ βˆ’ 12

Increasing or Decreasing

-

-

Decreasing

(π‘₯ =

βˆ’5 2

)

π‘₯=

βˆ’3 2

-

-

Decreasing

π‘₯>

βˆ’3 2

+

+

Increasing

(π‘₯ = 2) Therefore: The critical value is

βˆ’3 2

The function is decreasing in the interval π‘₯ < increasing in the interval π‘₯ > The minimum point is (

βˆ’3 2

βˆ’3 2

and

βˆ’3 2

, βˆ’ 16)

6b. Given: 3

2

𝑓(π‘₯) = π‘₯ βˆ’ 9π‘₯ + 24π‘₯ βˆ’ 10 I first found the derivative of the given function: 2

𝑓(π‘₯) = 3π‘₯ βˆ’ 18π‘₯ + 24 To find the critical values, I set the derivative equal to zero and solved for x. I then substituted the x values into the original given function to find the y values: 2

3π‘₯ βˆ’ 18π‘₯ + 24 = 0

3(π‘₯ βˆ’ 2)(π‘₯ βˆ’ 4) = 0 π‘₯ = 2, π‘₯ = 4 3

2

3

2

𝑓(2) = 2 βˆ’ 9(2) + 24(2) βˆ’ 10 𝑓(2) = 10 𝑓(4) = 2 βˆ’ 9(4) + 24(4) βˆ’ 10 𝑓(4) = 6 To find the intervals of increasing or decreasing, I made a table: Intervals

π‘₯βˆ’ 2 π‘₯βˆ’ 4

3(π‘₯ βˆ’ 2)(π‘₯ βˆ’ 4)

Increasing or Decreasing

π‘₯< 2 (π‘₯ = 1)

-

-

+

Increasing

2 < π‘₯< 4 + (π‘₯ = 3)

-

-

Decreasing

+

+

+

Increasing

π‘₯> 4 (π‘₯ = 5)

Therefore: The critical values are π‘₯ = 2, π‘Žπ‘›π‘‘ π‘₯ = 4

The function is increasing in the interval π‘₯ < 2 and π‘₯ > 4, and decreasing in the interval 2 < π‘₯ < 4. The maximum points is (2, 10) and the minimum point is (4, 6) 6c. Given: 2

π‘₯

𝑦=

2

π‘₯ +2π‘₯βˆ’15

I first found the derivative of the given function: 2

𝑓(π‘₯) =

2

(π‘₯ βˆ’2π‘₯βˆ’15)βˆ’(π‘₯ )(2π‘₯+2) 2

2

(π‘₯ +2π‘₯βˆ’15) 2

𝑓(π‘₯) =

2π‘₯ βˆ’30π‘₯ 2

2

(π‘₯ +2π‘₯βˆ’15)

To find the critical values, I set the derivative equal to zero and solved for x. I then substituted the x values into the original given function to find the y values: 2

2π‘₯ βˆ’30π‘₯ 2

2

(π‘₯ +2π‘₯βˆ’15)

= 0

π‘₯ = 0, π‘₯ = 15 𝑓(0) = 0 𝑓(15) =

15 16

2

π‘₯ + 2π‘₯ βˆ’ 15 = (π‘₯ + 5)(π‘₯ βˆ’ 3) π‘₯ =βˆ’ 5, π‘₯ = 3

To find the intervals of increasing or decreasing, I made a table: 2

Intervals

π‘₯+ 5 π‘₯βˆ’ 3

π‘₯ + 2π‘₯ βˆ’ 15

Increasing or Decreasing

π‘₯ 15 (π‘₯ = 20)

+

+

+

Increasing

Therefore: The critical values are π‘₯ = 0, π‘Žπ‘›π‘‘ π‘₯ = 15

The function is increasing in the intervals π‘₯ 15 , and decreasing in the interval βˆ’ 5 < π‘₯ < 3. The maximum point is (0, 0) and the minimum point is (15,

15 16

)

7a. Given: 4

3

𝑓(π‘₯) = π‘₯ βˆ’ 2π‘₯ + π‘₯ βˆ’ 2 I first found the first and second derivative of the given function, and then set the second derivative to 0 and solved for x: 3

2

𝑓'(π‘₯) = 4π‘₯ βˆ’ 6π‘₯ + 1 2

𝑓''(π‘₯) = 12π‘₯ βˆ’ 12π‘₯ 𝑓''(π‘₯) = 0 2

12π‘₯ βˆ’ 12π‘₯ = 0 π‘₯(12π‘₯ βˆ’ 12) = 0 12π‘₯ βˆ’ 12 = 0 π‘₯=

12 12

π‘₯= 1 Thus, the inflection points are π‘₯ = 0, π‘Žπ‘›π‘‘ π‘₯ = 1.

I then made a table to find concavity: Intervals

π‘₯βˆ’ 0

π‘₯βˆ’ 1

2 12π‘₯ βˆ’ 12π‘₯ Concavity

π‘₯< 0 (π‘₯ =βˆ’ 1)

-

-

+

Concave Up

0 < π‘₯< 1 + (π‘₯ = 0. 5)

-

-

Concave Down

+

+

+

Concave Up

π‘₯> 1 (π‘₯ = 2)

Therefore, the points of inflection are π‘₯ = 0, π‘Žπ‘›π‘‘ π‘₯ = 1, and the concavity is upwards during the intervals π‘₯ < 0 and π‘₯ = 1, but is downwards when 0 < π‘₯ < 1. 7b. Given: 2

𝑓(π‘₯) =

π‘₯ 2

π‘₯ βˆ’4

I first found the first and second derivative of the given function, and then set the second derivative to 0 and solved for x:

2

2

𝑓'(π‘₯) =

(π‘₯ βˆ’4)(2π‘₯)βˆ’(π‘₯ )(2π‘₯)

𝑓'(π‘₯) =

2π‘₯(π‘₯ βˆ’4)βˆ’2π‘₯

2

2

(π‘₯ βˆ’4) 2

𝑓'(π‘₯) =

3

2

2

(π‘₯ βˆ’4) (βˆ’8π‘₯) 2

2

(π‘₯ βˆ’4)

2

2

2

2

π‘₯(π‘₯ βˆ’4) βˆ’π‘₯(π‘₯ βˆ’4)

𝑓''(π‘₯) =βˆ’ 8 Β·

2

2 2

((π‘₯ βˆ’4) ) 2

2

2

2

𝑓''(π‘₯) =

βˆ’8(1(π‘₯ βˆ’4) βˆ’2(π‘₯ βˆ’4)(π‘₯ βˆ’4)(π‘₯))

𝑓''(π‘₯) =

βˆ’8((π‘₯ βˆ’4) βˆ’2(π‘₯ βˆ’4)(2π‘₯+0)π‘₯)

𝑓''(π‘₯) =

βˆ’8((π‘₯ βˆ’4) βˆ’4π‘₯ (π‘₯ βˆ’4))

𝑓''(π‘₯) =

βˆ’8(βˆ’3π‘₯ +4)

2

4

(π‘₯ βˆ’4) 2

2

2

2

4

(π‘₯ βˆ’4) 2

2

2

2

4

2

(π‘₯ βˆ’4) 2

2

3

(π‘₯ βˆ’4)

𝑓''(π‘₯) = 0 2

βˆ’ 8(βˆ’ 3π‘₯ βˆ’ 4) = 0 2

4 =βˆ’ 3π‘₯ π‘₯=

βˆ’4 3

Thus, because this is a negative root, there are no real roots, meaning there are no inflection points. So I instead had to find restrictions on the domain: 2

π‘₯ βˆ’ 4 = 0 (π‘₯ βˆ’ 2)(π‘₯ + 2) = 0 π‘₯ = 2, βˆ’ 2

I then made a table to find concavity: 2

Intervals

βˆ’8(βˆ’3π‘₯ +4) 2

Concavity

3

(π‘₯ βˆ’4)

π‘₯ 2 (π‘₯ = 3)

+

Concave Up

Therefore, there are no inflection points, and the function concaves up at the intervals π‘₯ 2 but concaves down at the interval βˆ’ 2 < π‘₯ < 2 8. Given: 4

2

𝑓(π‘₯) = π‘₯ βˆ’ 8π‘₯ + 5 I first found the first derivative, set it equal to zero and solved for the x values: 3

𝑓'(π‘₯) = 4π‘₯ βˆ’ 16π‘₯ 2

𝑓'(π‘₯) = 4π‘₯(π‘₯ βˆ’ 4) 𝑓'(π‘₯) = 4π‘₯(π‘₯ βˆ’ 2)(π‘₯ + 2)

𝑓'(π‘₯) = 0 4π‘₯(π‘₯ βˆ’ 2)(π‘₯ + 2) = 0 π‘₯ = 2, π‘₯ =βˆ’ 2, π‘₯ = 0 I then found the second derivative, substituted in my vales and solved: 2

𝑓''(π‘₯) = 12π‘₯ βˆ’ 16 2

𝑓''(0) = 12(0) βˆ’ 16 𝑓''(0) =βˆ’ 16 2

𝑓''(2) = 12(2) βˆ’ 16 𝑓''(2) =βˆ’ 32 2

𝑓''(βˆ’ 2) = 12(βˆ’ 2) βˆ’ 16 𝑓''(βˆ’ 2) = 32 I then substituted the x values into the original function: 4

2

4

2

𝑓(0) = (0) βˆ’ 8(0) + 5 𝑓(0) = 5 𝑓(2) = (2) βˆ’ 8(2) + 5 𝑓(2) =βˆ’ 11 4

2

𝑓(βˆ’ 2) = (βˆ’ 2) βˆ’ 8(βˆ’ 2) + 5 𝑓(βˆ’ 2) =βˆ’ 11 According to the second derivative test, since 𝑓''(0) < 0, π‘₯ = 0 is a maximum.

According to the second derivative test, since 𝑓''(2) > 0, 𝑓''(2) is a minimum. According to the second derivative test, since 𝑓''(βˆ’ 2) > 0, 𝑓''(βˆ’ 2) is a minimum. Therefore for the function , the minimums are: (2, βˆ’ 11)(βˆ’ 2, βˆ’ 11), and the maximum is: (0, 5) 9a. If a function changes from a decreasing interval to an increasing interval, the conclusion can be made that there is a minimum between the intervals 9b. If π‘™π‘–π‘š

+

π‘₯β†’0

𝑓(π‘₯) =βˆ’ ∞ π‘Žπ‘›π‘‘ π‘™π‘–π‘š

βˆ’

π‘₯β†’0

𝑓(π‘₯) = ∞ then the

conclusion can be made that there is a vertical asymptote at π‘₯ = 0 10. Given: 2

𝑦 = π‘₯ βˆ’ 4π‘₯ + 21 occurs π‘₯ = 2 2

𝑦 = (2) βˆ’ 4(2) + 21 𝑦 = 17 Therefore there is a minimum at (2, 17)

11. +

When finding one-sided limits, a 0 implies that the direction from which you approach zero is right, and that you are approaching the value of 0 plus a little bit. 12. A limit does not exist when the one sided limits are not equal, when the function does not approach a finite value, and when the function does not approach a particular value. 13. A function if said to be continuous if it meets 2 conditions: First, if π‘™π‘–π‘šπ‘₯β†’π‘Žπ‘“(π‘₯) exists and second if π‘™π‘–π‘šπ‘₯β†’π‘Žπ‘“(π‘₯) = 𝑓(π‘Ž)

14a. Given: 3

2

𝑦 = π‘₯ + π‘₯ βˆ’ 20π‘₯ To analyze the function I used the curve sketching procedure: 1. Domain The function is not rational or radical, meaning there are no restrictions on the domain. 𝐷 = (π‘₯ Ο΅ 𝑅) 2. Intercepts 𝑦 π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘: I set x=0 and solved for y: 3

2

𝑦 = (0) + (0) βˆ’ 20(0) 𝑦 π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘ = (0, 0) π‘₯ π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘π‘ : I set y=0 and solved for x: 3

2

π‘₯ + π‘₯ βˆ’ 20π‘₯ = 0 2

π‘₯(π‘₯ + π‘₯ βˆ’ 20) = 0 π‘₯(π‘₯ βˆ’ 4)(π‘₯ + 5) = 0 π‘₯ = 0, π‘₯ = 4, π‘₯ =βˆ’ 5

π‘₯ π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘π‘  = 0, 4, βˆ’ 5

3. Symmetry I tested both 𝑓(βˆ’ π‘₯) π‘Žπ‘›π‘‘ βˆ’ 𝑓(π‘₯): 3

2

𝑓(βˆ’ π‘₯) = (βˆ’ π‘₯) + (βˆ’ π‘₯ ) βˆ’ 20(βˆ’ π‘₯) 3

2

3

2

𝑓(βˆ’ π‘₯) =βˆ’ π‘₯ + π‘₯ + 20π‘₯ βˆ’ 𝑓(π‘₯) =βˆ’ π‘₯ βˆ’ π‘₯ + 20π‘₯ The function is neither even nor odd since 𝑓(π‘₯) β‰  𝑓(βˆ’ π‘₯) β‰ βˆ’ 𝑓(π‘₯). 4. Asymptotes No asymptotes since there are no restrictions on the domain, and the function is not rational. 5. Intervals of increase or decrease I found the first derivative, set it equal to zero and solved: 3

2

𝑓(π‘₯) = π‘₯ + π‘₯ βˆ’ 20π‘₯ 2

𝑓'(π‘₯) = 3π‘₯ + 2π‘₯ βˆ’ 20 2

3π‘₯ + 2π‘₯ βˆ’ 20 = 0 This was unfactorable so I used the quadratic formula: π‘Ž = 3, 𝑏 = 3, 𝑐 =βˆ’ 20 2

π‘₯=

βˆ’2Β± (βˆ’2) βˆ’4(3)(βˆ’20) 2(6)

π‘₯=

βˆ’1Β± 61 3

Thus the critical values are: π‘₯ = 2. 27008 π‘œπ‘Ÿ βˆ’ 2. 93675 I then made a table: 2

Intervals

π‘₯ βˆ’ 2. 27

π‘₯ + 2. 937

3π‘₯ + 2π‘₯ βˆ’ 20

Increasing or Decreasing

π‘₯ < 2. 27 (π‘₯ = 1)

-

+

-

Decreasing

2. 27 < π‘₯ < 2. 937 + (π‘₯ = 2. 5)

+

+

Increasing

+

+

+

Increasing

π‘₯ > 2. 93675 (π‘₯ = 4)

Thus, 𝑓(π‘₯) is increasing when 2. 27 < π‘₯ < 2. 937 and π‘₯ > 2. 937, but decreasing when π‘₯ < 2. 27. 6. Maximum and minimum points 3

2

𝑓(βˆ’ 2. 937) = (βˆ’ 2. 937) + (βˆ’ 2. 937) βˆ’ 20(βˆ’ 2. 937) 𝑓(βˆ’ 2. 937) = 42. 03 3

2

𝑓(2. 27) = (2. 27) + (2. 27) βˆ’ 20(2. 27) 𝑓(2. 27) =βˆ’ 28. 55

Thus, the maximum is (βˆ’ 2. 937, 42. 03) and the minimum is (2. 27, βˆ’ 28. 55)

7. Intervals of concavity I found the second derivative, set it equal to zero and solved: 2

𝑓'(π‘₯) = 3π‘₯ + 2π‘₯ βˆ’ 20 𝑓''(π‘₯) = 6π‘₯ + 2 6π‘₯ + 2 βˆ’ 0 6π‘₯ =βˆ’ 2 π‘₯=

βˆ’1 3

I set up a table for concavity: Intervals βˆ’1 3 βˆ’2 = 3

π‘₯< (π‘₯

βˆ’1 3 1 =3)

π‘₯> (π‘₯

6π‘₯ + 2

Concavity

-

Concave Down

+

Concave Up

)

Therefore the functions concaves down when π‘₯ <

βˆ’1 3

and up when π‘₯ >

βˆ’1 3

.

8. Points of inflection The function changes from concave down to up, meaning there is an inflection point when π‘₯ = 𝑓( 𝑓( 𝑓( 𝑓(

βˆ’1 3 βˆ’1 3 βˆ’1 3 βˆ’1 3

βˆ’1 3 ) + 3 2 20 + 3 27 182 27

) = ( ) = ) =

(

βˆ’1 2 ) 3

βˆ’ 20(

βˆ’1 3

βˆ’1 ) 3

) = 6. 74

Thus the inflection point is (

βˆ’1 3

, 6. 74)

:

9. Sketch the curve

14b. Given: 2

𝑦=

1+π‘₯

2

1βˆ’π‘₯

To analyze the function I used the curve sketching procedure: 1. Domain This function is a rational function, meaning there are restrictions on the domain and the denominator cannot be zero. 2

1 βˆ’π‘₯ = 0 2

π‘₯ = 1 π‘₯ β‰  1, βˆ’ 1 𝐷 = (π‘₯ Ο΅ 𝑅/π‘₯ β‰  1, βˆ’ 1) 2. Intercepts 𝑦 π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘: I set y=0 and solved

2

𝑦=

1+(0)

2

1βˆ’(0)

𝑦= 1 𝑦 π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘ = (0, 1) π‘₯ π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘: π‘π‘œ π‘₯ π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘π‘  π‘π‘’π‘π‘Žπ‘’π‘ π‘’ π‘‘β„Žπ‘’ π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ π‘π‘Žπ‘›π‘›π‘œπ‘‘ 𝑏𝑒 π‘§π‘’π‘Ÿπ‘œ. 3. Symmetry I tested 𝑓(βˆ’ π‘₯) π‘Žπ‘›π‘‘ βˆ’ 𝑓(π‘₯) 2

𝑓(βˆ’ π‘₯) =

1+(βˆ’π‘₯)

𝑓(βˆ’ π‘₯) =

1+π‘₯

βˆ’ 𝑓(π‘₯) =

βˆ’1βˆ’π‘₯

2

1βˆ’(βˆ’π‘₯) 2 2

1βˆ’π‘₯

2 2

βˆ’1+π‘₯

The function is even since 𝑓(βˆ’ π‘₯) = 𝑓(π‘₯) 4. Asymptotes There are restriction on the domain therefore: π‘‰π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ π‘Žπ‘ π‘¦π‘šπ‘π‘‘π‘œπ‘‘π‘’π‘ : π‘₯ = 1, π‘₯ =βˆ’ 1 This is a rational function, but the degrees are equal, therefore: π»π‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π‘Žπ‘ π‘¦π‘šπ‘π‘‘π‘œπ‘‘π‘’: 𝑦=

1 βˆ’1

π»π‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π‘Žπ‘ π‘¦π‘šπ‘π‘‘π‘œπ‘‘π‘’π‘ : 𝑦 =βˆ’ 1

5. Intervals of increase or decrease I found the first derivative, set equal to 0 and solved: 2

1+π‘₯

𝑓(π‘₯) =

2

1βˆ’π‘₯

2

𝑓'(π‘₯) = 𝑓'(π‘₯) = 4π‘₯ 2 2

(1βˆ’π‘₯ )

2

(1βˆ’π‘₯ )(2π‘₯)βˆ’(1+π‘₯ )(βˆ’2π‘₯) 2 2

(1βˆ’π‘₯ ) 4π‘₯ 2 2

(1βˆ’π‘₯ )

= 0

4π‘₯ = 0 π‘₯= 0 Thus, the critical point is π‘₯ = 0. I combined it with the domain restrictions and made a table:

4π‘₯

Intervals

2 2

(1βˆ’π‘₯ )

Increasing or Decreasing

π‘₯ 1 (π‘₯ = 2)

+

Increasing

Therefore 𝑓(π‘₯) is decreasing at π‘₯ 1. 6. Maximum and minimum points Since the function changes from decreasing to increasing at 0 < π‘₯ < 1, there is a minimum: 𝑓(0) = 1 Thus there is a minimum at (0, 1) 7. Intervals of concavity I found the second derivative, set it equal to 0 and solved: 𝑓'(π‘₯) =

4π‘₯ 2 2

(1βˆ’π‘₯ )

2 2

2

𝑓''(π‘₯) =

(1βˆ’π‘₯ ) (4)βˆ’(4π‘₯)(2(1βˆ’π‘₯ )(βˆ’2π‘₯))

𝑓''(π‘₯) =

4(3π‘₯ +1)

2 2 2

((1βˆ’π‘₯ ) ) 2

2 3

(1βˆ’π‘₯ )

𝑓''(π‘₯) = 0 2

4(3π‘₯ + 1) = 0 2

π‘₯ = π‘₯=

βˆ’1 3 βˆ’1 3

I used the restrictions to set up my table since there is no real root:

2

Interval

4(3π‘₯ + 1)

Concavity

π‘₯ 1 (π‘₯ = 2)

+

Concave Up

The function concaves up at all intervals. 8. Points of inflection No points of inflection because there is no real root.

9. Sketch the curve...


Similar Free PDFs