MECANICA DE MATERIALES beer PDF

Title MECANICA DE MATERIALES beer
Author Leo Castillo
Pages 817
File Size 80 MB
File Type PDF
Total Downloads 87
Total Views 296

Summary

Unidades de uso común en Estados Unidos y sus equivalencias en unidades del SI Cantidad Unidades de uso común Equivalente del SI en Estados Unidos Aceleración ft/s2 0.3048 m/s2 in./s2 0.0254 m/s2 Área ft2 0.0929 m2 in.2 645.2 mm2 Energía ft ⴢ lb 1.356 J Fuerza kip 4.448 kN lb 4.448 N oz 0.2780 N Im...


Description

Unidades de uso común en Estados Unidos y sus equivalencias en unidades del SI Cantidad

Unidades de uso común en Estados Unidos

Equivalente del SI

Aceleración

ft/s2 in./s2 ft2 in.2 ft ⴢ lb kip lb oz lb ⴢ s ft in. mi oz masa lb masa slug ton lb ⴢ ft lb ⴢ in.

0.3048 m/s2 0.0254 m/s2 0.0929 m2 645.2 mm2 1.356 J 4.448 kN 4.448 N 0.2780 N 4.448 N ⴢ s 0.3048 m 25.40 mm 1.609 km 28.35 g 0.4536 kg 14.59 kg 907.2 kg 1.356 N ⴢ m 0.1130 N ⴢ m

in.4 lb ⴢ ft ⴢ s2 ft ⴢ lb/s hp lb/ft2 lb/in.2 (psi) ft/s in./s mi/h (mph) mi/h (mph) ft3 in.3 gal qt ft ⴢ lb

0.4162 ⫻ 106 mm4 1.356 kg ⴢ m2 1.356 W 745.7 W 47.88 Pa 6.895 kPa 0.3048 m/s 0.0254 m/s 0.4470 m/s 1.609 km/h 0.02832 m3 16.39 cm3 3.785 L 0.9464 L 1.356 J

Área Energía Fuerza

Impulso Longitud

Masa

Momento de una fuerza Momento de inercia de un área de una masa Potencia Presión o esfuerzo Velocidad

Volumen, sólidos Líquidos Trabajo

MECÁNICA DE MATERIALES

MECÁNICA DE MATERIALES Quinta edición FERDINAND P. BEER

(finado)

Late of Lehigh University

E. RUSSELL JOHNSTON, JR. University of Connecticut

JOHN T. DEWOLF University of Connecticut

DAVID F. MAZUREK United States Coast Guard Academy

Revisión técnica: Jesús Manuel Dorador G. Universidad Nacional Autónoma de México

MÉXICO • BOGOTÁ • BUENOS AIRES • CARACAS • GUATEMALA MADRID • NUEVA YORK • SAN JUAN • SANTIAGO • SÃO PAULO AUCKLAND • LONDRES • MILÁN • MONTREAL • NUEVA DELHI SAN FRANCISCO • SINGAPUR • SAN LUIS • SIDNEY • TORONTO

Director Higher Education: Miguel Ángel Toledo Castellanos Editor sponsor: Pablo E. Roig Vázquez Coordinadora editorial: Marcela I. Rocha M. Editor de desarrollo: Edmundo Carlos Zúñiga Gutiérrez Supervisor de producción: Zeferino García García Traducción: Jesús Elmer Murrieta Murrieta MECÁNICA DE MATERIALES Quinta edición Prohibida la reproducción total o parcial de esta obra, por cualquier medio, sin la autorización escrita del editor.

DERECHOS RESERVADOS © 2010, 2007, 2003, 1993, 1982 respecto a la quinta edición en español por McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V. A Subsidiary of The McGraw-Hill Companies, Inc. Prolongación Paseo de la Reforma Núm. 1015, Torre A Piso 17, Colonia Desarrollo Santa Fe, Delegación Álvaro Obregón C.P. 01376, México, D. F. Miembro de la Cámara Nacional de la Industria Editorial Mexicana, Reg. Núm. 736 ISBN-13: 978-607-15-0263-6 (ISBN: 970-10-6101-2 edición anterior)

Traducido de la quinta edición en inglés de: Mechanics of Materials, fifth edition. Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved. ISBN 0-07-722140-0 1234567890

109876543210

Impreso en México

Printed in Mexico

Acerca de los autores Como editores de los libros escritos por Ferd Beer y Russ Johnston, a menudo se nos pregunta cómo fue que escribieron juntos sus libros, cuando uno de ellos trabaja en Lehigh y el otro en la University of Connecticut. La respuesta a esta pregunta es sencilla. El primer trabajo docente de Russ Johnston fue en el Departamento de Ingeniería Civil y Mecánica de Lehigh University. Ahí conoció a Ferd Beer, quien había ingresado a ese departamento dos años antes y estaba al frente de los cursos de mecánica. Fred Beer nació en Francia y se educó en ese país y en Suiza. Alcanza el grado de maestro en Ciencias en la Sorbona y el de doctor en Ciencias en el campo de la mecánica teórica en la Universidad de Ginebra. Llegó a Estados Unidos tras servir en el ejército francés a comienzos de la Segunda Guerra Mundial. También enseñó durante cuatro años en el Williams College en el programa conjunto de arte e ingeniería de Williams-MIT. Russ Johnston nació en Filadelfia y obtuvo el grado de licenciado en Ciencias en la University of Delaware y el grado de Doctor en Ciencias en el campo de ingeniería estructural en el MIT. Beer se alegró al descubrir que el joven que había sido contratado principalmente para impartir cursos de posgrado en ingeniería estructural no sólo deseaba ayudarlo a reestructurar los cursos de mecánica, sino que estaba ansioso por hacerlo. Ambos compartían la idea de que estos cursos deberían enseñarse a partir de algunos principios básicos y que los estudiantes entenderían y recordarían mejor los diversos conceptos involucrados si éstos se presentaban de manera gráfica. Juntos redactaron notas para las cátedras de estática y dinámica, a las que después añadieron problemas que, pensaron, serían de interés para los futuros ingenieros. Pronto tuvieron en sus manos el manuscrito de la primera edición de Mechanics for Engineers. Cuando apareció la segunda edición de este texto y la primera edición de Vector Mechanics for Engineers, Russ Johnston se hallaba en el Worcester Polytechnics Institute. Al publicarse las siguientes ediciones ya trabajaba en la University of Connecticut. Mientras tanto, Beer y Johnston habían asumido responsabilidades administrativas en sus departamentos, y ambos estaban involucrados en la investigación, en la consultoría y en la supervisión de estudiantes: Beer en el área de los procesos estocásticos y de las vibraciones aleatorias, y Johnston en el área de la estabilidad elástica y del diseño y análisis estructural. Sin embargo, su interés por mejorar la enseñanza de los cursos básicos de mecánica no había menguado, y ambos dirigieron secciones de estos cursos mientras continuaban revisando sus tex-

vii

viii

Acerca de los autores

tos y comenzaron a escribir juntos el manuscrito para la primera edición de Mechanics of Materials. Las contribuciones de Beer y Johnston a la educación en la ingeniería les han hecho merecedores de varios premios y honores. Se les otorgó el premio Western Electric Fund Award por la excelencia en la instrucción de los estudiantes de ingeniería por sus secciones regionales respectivas de la American Society for Engineering Education, y ambos recibieron el Premio al Educador Distinguido (Distinguished Educator Award) de la División de Mecánica de la misma sociedad. En 1991 Jonhston recibió el Premio al Ingeniero Civil Sobresaliente (Outstanding Civil Engineer Award) de la sección del estado de Connecticut de la American Society of Civil Engineering, y en 1995 Beer obtuvo el grado honorario de doctor en ingeniería por la Lehigh University. John T. DeWolf, profesor de ingeniería civil de la University of Connecticut, se unió al equipo de Beer y Johnston como autor en la segunda edición de Mecánica de materiales. John es licenciado en Ciencias en ingeniería civil por la University of Hawaii y obtuvo los grados de maestría y doctorado en ingeniería estructural por la Cornell University. Las áreas de su interés en la investigación son las de estabilidad elástica, monitoreo de puentes y análisis y diseño estructural. Es miembro de la Junta de Examinadores de Ingenieros Profesionales del Estado de Connecticut y fue seleccionado como miembro del Magisterio de la Universit y of Connecticut en 2006. David F. Mazurek, profesor de ingeniería civil en la United States Coast Guard Academy, es un autor nuevo en esta edición. David cuenta con una licenciatura en Ingeniería oceanográfica y una maestría en Ingeniería civil por el Florida Institute of Technology, así como un doctorado en Ingeniería civil por la University of Connecticut. Los últimos diecisiete años ha trabajado para el Comité de Ingeniería y Mantenimiento de Vías y Caminos Estadounidenses en el área de estructuras de acero. Entre sus intereses profesionales se incluyen la ingeniería de puentes, el análisis forense de estructuras y el diseño resistente a las explosiones.

Contenido Prefacio Lista de símbolos

xv xxi

1 INTRODUCCIÓN. EL CONCEPTO DE ESFUERZO 1 1.1 Introducción 1.2 Un breve repaso de los métodos de la estática 1.3 Esfuerzos en los elementos de una estructura 1.4 Análisis y diseño 1.5 Carga axial. Esfuerzo normal 1.6 Esfuerzo cortante 1.7 Esfuerzo de apoyo en conexiones 1.8 Aplicación al análisis y diseño de estructuras sencillas 1.9 Método para la solución de problemas 1.10 Exactitud numérica 1.11 Esfuerzos en un plano oblicuo bajo carga axial

2 2 5 6 7 9 11 12 14 15 23

1.12 Esfuerzos bajo condiciones generales de carga.

Componentes del esfuerzo 1.13 Consideraciones de diseño

24 27

Repaso y resumen del capítulo 1

38

2 ESFUERZO Y DEFORMACIÓN. CARGA AXIAL 46 2.1 Introducción 2.2 Deformación normal bajo carga axial 2.3 Diagrama esfuerzo-deformación *2.4 Esfuerzo y deformación verdaderos 2.5 Ley de Hooke. Módulo de elasticidad

47 48 50 55 56

ix

x

Contenido

2.6 Comportamiento elástico contra comportamiento plástico 2.7 2.8 2.9 2.10 2.11 2.12 *2.13 2.14 2.15 *2.16 2.17 2.18 2.19 *2.20

de un material Cargas repetidas. Fatiga Deformaciones de elementos sometidas a carga axial Problemas estáticamente indeterminados Problemas que involucran cambios de temperatura Relación de Poisson Carga multiaxial. Ley de Hooke generalizada Dilatación. Módulo de elasticidad volumétrico (o módulo de compresibilidad) Deformación unitaria cortante Análisis adicional de las deformaciones bajo carga axial. Relación entre E, n y G Relaciones de esfuerzo-deformación para materiales compuestos reforzados con fibras Distribución del esfuerzo y de la deformación bajo carga axial. Principio de Saint-Venant Concentraciones de esfuerzos Deformaciones plásticas Esfuerzos residuales

57 59 61 70 74 84 85

104 107 109 113

Repaso y resumen del capítulo 2

121

87 89 92 95

3 TORSIÓN 131 3.1 Introducción 3.2 Análisis preliminar de los esfuerzos en un eje 3.3 Deformaciones en un eje circular 3.4 Esfuerzos en el rango elástico 3.5 Ángulo de giro en el rango elástico 3.6 Ejes estáticamente indeterminados 3.7 Diseño de ejes de transmisión 3.8 Concentraciones de esfuerzo en ejes circulares *3.9 Deformaciones plásticas en ejes circulares *3.10 Ejes circulares hechos de un material elastoplástico *3.11 Esfuerzos residuales en ejes circulares *3.12 Torsión de elementos no circulares *3.13 Ejes huecos de pared delgada

Repaso y resumen del capítulo 3

132 134 136 139 150 153 165 167 172 174 177 186 189 198

4 FLEXIÓN PURA 208 4.1 Introducción 4.2 Elemento simétrico sometido a flexión pura

209 211

4.3 Deformaciones en un elemento simétrico sometido

a flexión pura

213

4.4 Esfuerzos y deformaciones en el rango elástico 4.5 Deformaciones en una sección transversal 4.6 Flexión de elementos hechos de varios materiales 4.7 Concentración de esfuerzos *4.8 Deformaciones plásticas *4.9 Elementos hechos de material elastoplástico

216 220 230 234 243 246

*4.10 Deformaciones plásticas en elementos con un solo

plano de simetría *4.11 Esfuerzos residuales 4.12 Carga axial excéntrica en un plano de simetría 4.13 Flexión asimétrica 4.14 Caso general de carga axial excéntrica *4.15 Flexión de elementos curvos

Repaso y resumen del capítulo 4

250 250 260 270 276 285 298

5 ANÁLISIS Y DISEÑO DE VIGAS PARA FLEXIÓN 307 5.1 Introducción 5.2 Diagramas de cortante y de momento flector 5.3 Relaciones entre la carga, el cortante y el momento flector 5.4 Diseño de vigas prismáticas a la flexión

308 311 322 332

*5.5 Uso de funciones de singularidad para determinar

el cortante y el momento flector en una viga *5.6 Vigas no prismáticas Repaso y resumen del capítulo 5

343 354 363

6 ESFUERZOS CORTANTES EN VIGAS Y EN ELEMENTOS DE PARED DELGADA 371 6.1 Introducción 6.2 Cortante en la cara horizontal de un elemento de una viga 6.3 Determinación de los esfuerzos cortantes en una viga 6.4 Esfuerzos cortantes txy en tipos comunes de vigas

372 374 376 377

*6.5 Análisis adicional sobre la distribución de esfuerzos 6.6 6.7 *6.8 *6.9

en una viga rectangular delgada Corte longitudinal en un elemento de viga con forma arbitraria Esfuerzos cortantes en elementos de pared delgada Deformaciones plásticas Carga asimétrica de elementos de pared delgada. Centro de cortante

380 388 390 392

Repaso y resumen del capítulo 6

414

402

Contenido

xi

xii

7

Contenido

TRANSFORMACIONES DE ESFUERZOS Y DEFORMACIONES 422 7.1 Introducción 7.2 Transformación de esfuerzo plano 7.3 Esfuerzos principales. Esfuerzo cortante máximo 7.4 Círculo de Mohr para esfuerzo plano 7.5 Estado general de esfuerzos

423 425 428 436 446

7.6 Aplicación del círculo de Mohr al análisis tridimensional *7.7 *7.8 7.9 *7.10

de esfuerzos Criterios de fluencia para materiales dúctiles bajo esfuerzo plano Criterios de fractura para materiales frágiles bajo esfuerzo plano Esfuerzos en recipientes de pared delgada a presión Transformación de deformación plana

*7.11 Círculo de Mohr para deformación plana *7.12 Análisis tridimensional de la deformación *7.13 Mediciones de la deformación. Roseta de deformación

Repaso y resumen del capítulo 7

448 451 453 462 470 473 475 478 486

8 ESFUERZOS PRINCIPALES BAJO UNA CARGA DADA 495 *8.1 Introducción

*8.4 Esfuerzos bajo cargas combinadas

496 497 500 508

Repaso y resumen del capítulo 8

521

*8.2 Esfuerzos principales en una viga *8.3 Diseño de ejes de transmisión

9 DEFLEXIÓN DE VIGAS 529 9.1 Introducción 9.2 Deformación de una viga bajo carga transversal 9.3 Ecuación de la curva elástica

530 532 533

*9.4 Determinación directa de la curva elástica a partir de la

distribución de carga 9.5 Vigas estáticamente indeterminadas

538 540

*9.6 Uso de funciones de singularidad para determinar la

pendiente y la deflexión de una viga 9.7 Método de superposición

549 558

9.8 Aplicación de la superposición a vigas estáticamente *9.9 *9.10 *9.11 *9.12 *9.13 *9.14

indeterminadas Teoremas de momento de área Aplicación a vigas en voladizo y vigas con cargas simétricas Diagramas de momento flector por partes Aplicación de los teoremas de momento de área a vigas con cargas asimétricas Deflexión máxima Uso de los teoremas de momento de área con vigas estáticamente indeterminadas Repaso y resumen del capítulo 9

Contenido

560 569 571 573 582 584 586 594

10 COLUMNAS 606 10.1 Introducción

607

10.2 Estabilidad de estructuras

608 610

10.3 Fórmula de Euler para columnas articuladas 10.4 Extensión de la fórmula de Euler para columnas con otras

condiciones de extremo *10.5 Carga excéntrica. Fórmula de la secante 10.6 Diseño de columnas bajo una carga céntrica 10.7 Diseño de columnas bajo una carga excéntrica Repaso y resumen del capítulo 10

614 625 636 652 662

11 MÉTODOS DE ENERGÍA 669 11.1 Introducción 11.2 Energía de deformación 11.3 Densidad de energía de deformación 11.4 Energía elástica de deformación para esfuerzos normales 11.5 Energía de deformación elástica para esfuerzos cortantes

670 670 672 674 677

11.6 Energía de deformación para un estado general 11.7 11.8 11.9 11.10 *11.11 *11.12 *11.13 *11.14

de esfuerzos Cargas de impacto Diseño para cargas de impacto Trabajo y energía bajo una carga única Deflexión bajo una carga única por el método de trabajo-energía Trabajo y energía bajo varias cargas Teorema de Castigliano Deflexiones por el teorema de Castigliano Estructuras estáticamente indeterminadas

680 693 695 696

Repaso y resumen del capítulo 11

726

698 709 711 712 716

xiii

xiv

APÉNDICES 735

Contenido

A B C D E

Momentos de áreas Propiedades típicas de materiales seleccionados usados en ingeniería Propiedades de perfiles laminados de acero Deflexiones y pendientes de vigas Fundamentos de la certificación en ingeniería en Estados Unidos

736 746 750 762 763

Créditos de fotografías

765

Índice

767

Respuestas a los problemas

777

PREFACIO OBJETIVOS El objetivo principal de un curso básico de mecánica es lograr que el estudiante de ingeniería desarrolle su capacidad para analizar de una manera sencilla y lógica un problema dado, y que aplique a su solución unos pocos principios fundamentales bien entendidos. Este libro se diseñó para el primer curso de mecánica de materiales ⎯o de resistencia de materiales⎯ que se imparte a los estudiantes de ingeniería de segundo o tercer año. Los autores esperan que la presente obra ayude al profesor a alcanzar esta meta en un curso en particular, de la misma manera que sus otros libros pueden haberle ayudado en estática y dinámica. ENFOQUE GENERAL

En este libro el estudio de la mecánica de materiales se basa en la comprensión de los conceptos básicos y en el uso de modelos simplificados. Este enfoque hace posible deducir todas las fórmulas necesarias de manera lógica y racional, e indicar claramente las condiciones bajo las que pueden aplicarse con seguridad al análisis y diseño de estructuras ingenieriles y componentes de máquinas reales. Los diagramas de cuerpo libre se usan de manera extensa. Los diagramas de cuerpo libre se emplean extensamente en todo el libro para determinar las fuerzas internas o externas. El uso de “ecuaciones en dibujo” también permitirá a los estudiantes comprender la superposición de cargas, así como los esfuerzos y las deformaciones resultantes. Los conceptos de diseño se estudian a lo largo de todo el libro y en el momento apropiado. En el capítulo 1 puede encontrarse un aná-

lisis de la aplicación del factor de seguridad en el diseño, donde se presentan los conceptos tanto de diseño por esfuerzo permisible como de diseño por factor de carga y resistencia. Se mantiene un balance cuidadoso entre las unidades del SI y las del sistema inglés. Puesto que es esencial que los estudiantes sean

capaces de manejar tanto las unidades del sistema métrico o SI como las del sistema inglés, la mitad de los ejemplos, los problemas modelo y los problemas de repaso se han planteado en unidades SI, y la otra mitad en unida-

xv

xvi

Prefacio

des estadounidenses. Como hay disponible un gran número de problemas, los instructores pueden asignarlos utilizando cada sistema de unidades en la proporción que consideren más deseable para su clase. En las secciones opcionales se ofrecen temas avanzados o especializados. En las secciones optativas se han incluido temas adicionales,

como esfuerzos residuales, torsión de elementos no circulares y de pared delgada, flexión de vigas curvas, esfuerzos cortantes en elementos no simétricos, y criterios de falla, temas que pueden usarse en cursos con distintos alcances. Para conservar la integridad del material de estudio, estos temas se presentan, en la secuencia adecuada, dentro de las secciones a las que por lógica pertenecen. Así, aun cuando no se cubran en el curso, están altamente evidenciados, y el estudiante puede consultarlos si así lo requiere en cursos posteriores o en su práctica de la ingeniería. Por conveniencia, todas las secciones optativas se han destacado con asteriscos. ORGANIZACIÓN DE LOS CAPÍTULOS

Se espera que los estudiantes que empleen este texto ya hayan completado un curso de estática. Sin embargo, el capítulo 1 se diseñó para brindarles la oportunidad de repasar los conceptos aprendidos en dicho curso, mientras que los diagramas de cortante y de momento flexionan...


Similar Free PDFs