Microelectronics Circuit Analysis and Design Donald Neamen 4th Solutions PDF

Title Microelectronics Circuit Analysis and Design Donald Neamen 4th Solutions
Author Joey Vagedes
Pages 665
File Size 6.7 MB
File Type PDF
Total Downloads 209
Total Views 469

Summary

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ Chapter 1 1.1 − Eg / 2 kT ni = BT 3 / 2 e (a) Silicon ⎡ −1.1 ⎤ ni = ( 5.23 × 1015 ) ( 250 ) 3/ 2 (i) exp ⎢ ⎥ ...


Description

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________

Chapter 1 1.1

ni = BT 3 / 2 e (a) Silicon

− Eg / 2 kT

⎡ ⎤ −1.1 ⎥ exp ⎢ ⎢⎣ 2 ( 86 × 10−6 ) ( 250 ) ⎥⎦ = 2.067 × 1019 exp [ −25.58] ni = 1.61× 108 cm −3

(i)

ni = ( 5.23 × 1015 ) ( 250 )

(ii)

ni = ( 5.23 × 1015 ) ( 350 )

(b)

GaAs

(i)

ni = ( 2.10 × 1014 ) ( 250 )

3/ 2

⎡ ⎤ −1.1 ⎥ exp ⎢ ⎢⎣ 2 ( 86 × 10−6 ) ( 350 ) ⎥⎦ = 3.425 × 1019 exp [ −18.27 ] ni = 3.97 ×1011 cm −3 3/ 2

3/ 2

⎡ ⎤ −1.4 ⎥ exp ⎢ −6 ⎢⎣ 2 ( 86 × 10 ) ( 250 ) ⎥⎦

= ( 8.301× 1017 ) exp [ −32.56] ni = 6.02 × 103 cm −3

(ii)

ni = ( 2.10 × 1014 ) ( 350 )

3/ 2

⎡ ⎤ −1.4 ⎥ exp ⎢ ⎢⎣ 2 ( 86 × 10−6 ) ( 350 ) ⎥⎦

= (1.375 × 1018 ) exp [ −23.26] ni = 1.09 × 108 cm −3

______________________________________________________________________________________ 1.2

a.

⎛ − Eg ⎞ ni = BT 3 / 2 exp ⎜ ⎟ ⎝ 2kT ⎠ ⎛ ⎞ −1.1 1012 = 5.23 × 1015 T 3 / 2 exp ⎜ ⎟ −6 ⎝ 2(86 × 10 )(T ) ⎠

⎛ 6.40 × 103 ⎞ 1.91× 10−4 = T 3 / 2 exp ⎜ − ⎟ T ⎝ ⎠ By trial and error, T ≈ 368 K b. ni = 109 cm −3 ⎛ ⎞ −1.1 ⎟ 109 = 5.23 × 1015 T 3 / 2 exp ⎜ ⎜ 2 ( 86 × 10−6 ) (T ) ⎟ ⎝ ⎠ ⎛ 6.40 × 103 ⎞ 1.91× 10−7 = T 3 / 2 exp ⎜ − ⎟ T ⎝ ⎠ By trial and error, T ≈ 268° K ______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 1.3

Silicon (a)

ni = ( 5.23 × 1015 ) (100 )

3/ 2

⎡ ⎤ −1.1 ⎥ exp ⎢ ⎢⎣ 2 ( 86 × 10−6 ) (100 ) ⎥⎦

= ( 5.23 × 1018 ) exp [ −63.95] ni = 8.79 ×10−10 cm −3

(b)

ni = ( 5.23 × 1015 ) ( 300 )

3/ 2

⎡ ⎤ −1.1 ⎥ exp ⎢ −6 ⎢⎣ 2 ( 86 × 10 ) ( 300 ) ⎥⎦

= ( 2.718 × 1019 ) exp [ −21.32] ni = 1.5 × 1010 cm −3

(c)

ni = ( 5.23 × 1015 ) ( 500 )

3/ 2

⎡ ⎤ −1.1 ⎥ exp ⎢ ⎢⎣ 2 ( 86 × 10−6 ) ( 500 ) ⎥⎦

= ( 5.847 × 1019 ) exp [ −12.79] ni = 1.63 × 1014 cm −3

Germanium. (a)

ni = (1.66 × 1015 ) (100 )

3/ 2

⎡ ⎤ −0.66 ⎥ = (1.66 × 1018 ) exp [ −38.37 ] exp ⎢ −6 ⎢⎣ 2 ( 86 × 10 ) (100 ) ⎥⎦

ni = 35.9 cm −3 (b)

ni = (1.66 × 1015 ) ( 300 )

3/ 2

⎡ ⎤ −0.66 ⎥ = ( 8.626 × 1018 ) exp [ −12.79] exp ⎢ −6 ⎢⎣ 2 ( 86 × 10 ) ( 300 ) ⎥⎦

ni = 2.40 × 1013 cm −3 (c)

ni = (1.66 × 1015 ) ( 500 )

3/ 2

⎡ ⎤ −0.66 ⎥ = (1.856 × 1019 ) exp [ −7.674] exp ⎢ −6 ⎢⎣ 2 ( 86 × 10 ) ( 500 ) ⎥⎦

ni = 8.62 ×1015 cm −3 ______________________________________________________________________________________ 1.4

(a) n-type; no = 10

15

(

)

(

)

n2 2.4 × 1013 cm ; po = i = no 1015 −3

2

2

= 5.76 × 1011 cm −3

ni2 1.5 × 1010 = = 2.25 × 10 5 cm −3 no 1015 ______________________________________________________________________________________

(b) n-type; no = 1015 cm −3 ; po =

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 1.5

(a) p-type; p o = 1016 cm −3 ; no =

(

ni2 1.8 × 10 6 = po 1016

)

(

2

= 3.24 × 10 − 4 cm −3

)

2

ni2 2.4 × 1013 = = 5.76 × 1010 cm −3 po 1016 ______________________________________________________________________________________

(b) p-type; p o = 1016 cm −3 ; no =

1.6

(a) (b)

n-type no = N d = 5 × 1016 cm −3 10 ni2 (1.5 × 10 ) po = = = 4.5 × 103 cm −3 no 5 × 1016 2

(c)

no = N d = 5 × 1016 cm −3

From Problem 1.1(a)(ii) ni = 3.97 × 1011 cm −3

( 3.97 × 10 ) =

11 2

= 3.15 × 106 cm −3 5 × 1016 ______________________________________________________________________________________ po

1.7

(a) p-type; p o = 5 × 1016 cm −3 ; no =

(

)

(

)

ni2 1.5 × 1010 = po 5 × 1016

2

= 4.5 × 10 3 cm −3

2

ni2 1.8 × 10 6 = = 6.48 × 10 −5 cm −3 po 5 × 1016 ______________________________________________________________________________________

(b) p-type; p o = 5 × 1016 cm −3 ; no =

1.8 (a) Add boron atoms (b) N a = po = 2 × 1017 cm −3

(

)

2

ni2 1.5 × 1010 = = 1.125 × 10 3 cm −3 po 2 × 1017 ______________________________________________________________________________________

(c) no =

1.9

(a)

no = 5 × 1015 cm −3 10 n 2 (1.5 × 10 ) po = i = ⇒ po = 4.5 × 104 cm −3 no 5 × 1015 2

(b)

n o > p o ⇒ n-type

(c) no ≅ N d = 5 × 1015 cm −3 ______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 1.10 a.

b.

Add Donors N d = 7 × 1015 cm −3 Want po = 106 cm −3 = ni2 / N d

So ni2 = (106 )( 7 × 1015 ) = 7 × 10 21 ⎛ − Eg ⎞ = B 2T 3 exp ⎜ ⎟ ⎝ kT ⎠

⎛ ⎞ 2 −1.1 ⎟ 7 × 1021 = ( 5.23 × 1015 ) T 3 exp ⎜ 6 − ⎜ ( 86 × 10 ) (T ) ⎟ ⎝ ⎠ By trial and error, T ≈ 324° K ______________________________________________________________________________________

1.11 (a) I = Aσ Ε = 10 −5 (1.5)(10) ⇒ I = 0.15 mA

( )

(

)

Iρ 1.2 × 10 −3 (0.4) = 2.4 V/cm = A ρ 2 × 10 − 4 ______________________________________________________________________________________

(b) I =



⇒Ε=

(

)

1.12

J 120 −1 = = 6.67 (Ω − cm) Ε 18 σ (6.67) σ ≅ eμ n N d ⇒ N d = = = 3.33 × 1016 cm −3 eμ n 1.6 × 10 −19 (1250) ______________________________________________________________________________________ J =σΕ ⇒σ =

(

)

1.13

1 1 1 ⇒ Nd = = = 7.69 × 1015 cm −3 eμ n N d eμ n ρ 1.6 × 10 −19 (1250)(0.65) Ε (b) J = ⇒ Ε = ρ J = (0.65)(160 ) = 104 V/cm ρ ______________________________________________________________________________________ (a) ρ ≅

(

)

1.14

σ 1.5 = = 9.375 × 1015 cm −3 eμ n 1.6 × 10 −19 (1000) σ 0.8 = = 1.25 × 1016 cm −3 (b) N a = −19 eμ p 1.6 × 10 (400) ______________________________________________________________________________________ (a) σ ≅ eμ n N d ⇒ N d =

(

(

)

)

1.15 (a) For n-type, σ ≅ eμ n N d = (1.6 × 10 −19 ) ( 8500 ) N d

For 1015 ≤ N d ≤ 1019 cm −3 ⇒ 1.36 ≤ σ ≤ 1.36 × 104 ( Ω − cm )

−1

(b) J = σ E = σ ( 0.1) ⇒ 0.136 ≤ J ≤ 1.36 ×103 A / cm2 ______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 1.16 Dn = (0.026)(1250) = 32.5 cm 2 /s; D p = (0.026 )(450 ) = 11.7 cm 2 /s J n = eDn

⎛ 1016 − 1012 dn = 1.6 × 10 −19 (32.5)⎜⎜ dx ⎝ 0 − 0.001

(

J p = −eD p

)

⎞ ⎟⎟ = −52 A/cm 2 ⎠

⎛ 1012 − 1016 dp = − 1.6 × 10 −19 (11.7 )⎜⎜ dx ⎝ 0 − 0.001

(

)

⎞ ⎟⎟ = −18.72 A/cm 2 ⎠

Total diffusion current density J = −52 − 18.72 = −70.7 A/cm 2 ______________________________________________________________________________________ 1.17 J p = −eD p

dp dx

⎛ −1 ⎞ ⎛ −x ⎞ = −eD p (10 15 ) ⎜ ⎟ exp ⎜ ⎟ ⎜ Lp ⎟ ⎜ Lp ⎟ ⎝ ⎠ ⎝ ⎠

(1.6 ×10 ) (15) (10 ) exp ⎛ − x ⎞ −19

Jp =

15

⎜⎜ ⎟⎟ ⎝ Lp ⎠

10 × 10 −4

J p = 2.4 e

− x / Lp

J p = 2.4 A/cm2

(a)

x=0

(b)

x = 10 μ m

J p = 2.4 e−1 = 0.883 A/cm 2

x = 30 μ m J p = 2.4 e−3 = 0.119 A/cm 2 ______________________________________________________________________________________ (c)

1.18 a.

N a = 1017 cm −3 ⇒ po = 1017 cm −3 n 2 (1.8 × 10 no = i = 1017 po

b.

)

6 2

⇒ no = 3.24 × 10−5 cm −3

n = no + δ n = 3.24 × 10−5 + 1015 ⇒ n = 1015 cm −3 p = po + δ p = 1017 + 1015 ⇒ p = 1.01× 1017 cm −3

______________________________________________________________________________________ ⎛N N 1.19 Vbi = VT ln⎜⎜ a 2 d ⎝ ni

(a) (i)

⎞ ⎟ ⎟ ⎠

(

)(

⎡ 5 × 1015 5 × 1015 Vbi = (0.026 ) ln ⎢ 2 ⎢⎣ 1.5 × 1010

(

(

)

)⎤⎥ = 0.661 V ⎥⎦

)( ) ( ) ⎡ (10 )(10 ) ⎤ = (0.026 ) ln ⎢ ⎥ = 0.937 V ⎣⎢ (1.5 × 10 ) ⎦⎥

(ii)

⎡ 5 × 1017 1015 ⎤ Vbi = (0.026 ) ln ⎢ ⎥ = 0.739 V 10 2 ⎥⎦ ⎣⎢ 1.5 × 10

(iii)

Vbi

18

18

10 2

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________

(

)(

⎡ 5 × 1015 5 × 1015 Vbi = (0.026 ) ln ⎢ 2 ⎢⎣ 1.8 × 10 6

(b) (i)

(

(

)

)⎤⎥ = 1.13 V ⎥⎦

)( )⎤⎥ = 1.21 V ( ) ⎥⎦ ⎡ (10 )(10 ) ⎤ = (0.026 ) ln ⎢ ⎥ = 1.41 V ⎢⎣ (1.8 × 10 ) ⎥⎦

(ii)

⎡ 5 × 1017 1015 Vbi = (0.026 ) ln ⎢ 2 ⎢⎣ 1.8 × 10 6

(iii)

Vbi

18

18

6 2

______________________________________________________________________________________ 1.20 ⎛N N Vbi = VT ln⎜⎜ a 2 d ⎝ ni

or

⎞ ⎟ ⎟ ⎠

(n ) exp⎛⎜ V

(1.5 × 10) exp⎛ 0.712 ⎞ = 1.76 × 1016 cm −3 bi ⎞ ⎜ ⎟ ⎜ V ⎟⎟ = 1016 Nd ⎝ 0.026 ⎠ ⎝ T ⎠ ______________________________________________________________________________________ Na =

1.21

2 i

2

⎡ N a (1016 ) ⎤ ⎛N N ⎞ ⎥ Vbi = VT ln ⎜ a 2 d ⎟ = ( 0.026 ) ln ⎢ 10 2 ⎢⎣ (1.5 × 10 ) ⎥⎦ ⎝ ni ⎠

For N a = 1015 cm −3 , Vbi = 0.637 V For N a = 1018 cm −3 , Vbi = 0.817 V

______________________________________________________________________________________ 1.22

⎛ T ⎞ kT = (0.026) ⎜ ⎟ ⎝ 300 ⎠ 200 250 300 350 400 450 500

kT 0.01733 0.02167 0.026 0.03033 0.03467 0.0390 0.04333

(T)3/2 2828.4 3952.8 5196.2 6547.9 8000.0 9545.9 11,180.3

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ ⎛ ⎞ −1.4 ⎟ ni = ( 2.1× 1014 )(T 3 / 2 ) exp ⎜ ⎜ 2 ( 86 × 10−6 ) (T ) ⎟ ⎝ ⎠ ⎛N N ⎞ Vbi = VT ln ⎜ a 2 d ⎟ ⎝ ni ⎠ T ni 200 1.256 250 6.02 × 103 300 1.80 × 106 350 1.09 × 108 400 2.44 × 109 450 2.80 × 1010 500 2.00 × 1011

Vbi 1.405 1.389 1.370 1.349 1.327 1.302 1.277

______________________________________________________________________________________ 1.23

⎛ V ⎞ C j = C jo ⎜1 + R ⎟ ⎝ Vbi ⎠

−1/ 2

⎡ (1.5 × 10 16 )( 4 × 10 15 ) ⎤ ⎥ = 0.684 V Vbi = ( 0.026 ) ln ⎢ ⎢⎣ (1.5 ×10 10 ) 2 ⎥⎦ 1 ⎞ ⎛ C j = ( 0.4 ) ⎜ 1 + ⎟ 0.684 ⎝ ⎠

−1/ 2

(a)

3 ⎞ ⎛ C j = ( 0.4 ) ⎜ 1 + ⎟ ⎝ 0.684 ⎠

−1/ 2

(b)

= 0.255 pF

= 0.172 pF −1/ 2

5 ⎞ ⎛ = 0.139 pF C j = ( 0.4 ) ⎜ 1 + ⎟ ⎝ 0.684 ⎠ ______________________________________________________________________________________

(c)

1.24

(a)

⎛ V ⎞ C j = C jo ⎜1 + R ⎟ ⎝ Vbi ⎠

−1 / 2

5 ⎞ ⎛ For VR = 5 V, C j = (0.02) ⎜ 1 + ⎟ ⎝ 0. 8 ⎠

−1 / 2

⎛ 1. 5 ⎞ For VR = 1.5 V, C j = (0.02) ⎜1 + ⎟ ⎝ 0. 8 ⎠

= 0.00743 pF −1 / 2

= 0.0118 pF

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 0.00743 + 0.0118 = 0.00962 pF 2 vC ( t ) = vC ( final ) + ( vC ( initial ) − vC ( final ) ) e − t / τ

C j (avg ) =

where τ = RC = RC j (avg ) = (47 × 103 )(0.00962 × 10−12 ) or

τ = 4.52 ×10−10 s Then vC ( t ) = 1.5 = 0 + ( 5 − 0 ) e−ti / τ

5 + r /τ ⎛ 5 ⎞ = e 1 ⇒ t1 = τ ln ⎜ ⎟ 1.5 ⎝ 1.5 ⎠ −10 t1 = 5.44 × 10 s (b)

For VR = 0 V, Cj = Cjo = 0.02 pF −1/ 2 ⎛ 3.5 ⎞ For VR = 3.5 V, C j = ( 0.02 ) ⎜ 1 + = 0.00863 pF ⎟ ⎝ 0.8 ⎠ 0.02 + 0.00863 C j (avg ) = = 0.0143 pF 2 τ = RC j ( avg ) = 6.72 ×10−10 s vC ( t ) = vC ( final ) + ( vC ( initial ) − vC ( final ) ) e − t / τ

(

3.5 = 5 + (0 − 5)e − t2 /τ = 5 1 − e − t2 /τ

so that t2 = 8.09 × 10

−10

)

s

______________________________________________________________________________________ 1.25

⎛ V C j = C jo ⎜⎜1 + R ⎝ Vbi

⎞ ⎟⎟ ⎠

−1 / 2

(

)( ) )

⎡ 5 × 1015 1017 ⎤ ; Vbi = (0.026 ) ln ⎢ ⎥ = 0.739 V 10 2 ⎥⎦ ⎣⎢ 1.5 × 10

(

For V R = 1 V, Cj =

0.60 1 1+ 0.739

= 0.391 pF

For VR = 3 V, Cj =

0.60 3 1+ 0.739

= 0.267 pF

For V R = 5 V, 0.60

Cj =

(a)

fo =

(b) f o =

1 2π LC

(

5 1+ 0.739

=

(

= 0.215 pF

2π 1.5 × 10

2π 1.5 × 10

1 −3

)(0.391× 10 ) −12

1 −3

)(0.267 × 10 ) −12

⇒ f o = 6.57 MHz

⇒ f o = 7.95 MHz

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________

fo =

1

⇒ f o = 8.86 MHz 2π 1.5 × 10 0.215 × 10 −12 ______________________________________________________________________________________ (c)

(

−3

)(

)

1.26

a.

⎡ ⎛V ⎞ ⎤ ⎛V ⎞ I = I S ⎢ exp ⎜ D ⎟ − 1⎥ − 0.90 = exp ⎜ D ⎟ − 1 ⎝ VT ⎠ ⎦ ⎝ VT ⎠ ⎣ ⎛V ⎞ exp ⎜ D ⎟ = 1 − 0.90 = 0.10 ⎝ VT ⎠

VD = VT ln ( 0.10 ) ⇒ VD = −0.0599 V

b. IF IR

⎡ ⎛ VF ⎢ exp ⎜ I ⎝ VT = S ⋅⎣ IS ⎡ ⎛ VR ⎢exp ⎜ ⎝ VT ⎣ =

⎞ ⎤ ⎛ 0.2 ⎞ ⎟ − 1⎥ exp ⎜ ⎟ −1 0.026 ⎠ ⎠ ⎦ ⎝ = ⎞ ⎤ exp ⎛ −0.2 ⎞ − 1 ⎜ ⎟ ⎟ − 1⎥ ⎝ 0.026 ⎠ ⎠ ⎦

2190 −1

IF = 2190 IR

______________________________________________________________________________________

⎡ ⎛V 1.27 I D = I S ⎢exp⎜⎜ D ⎣⎢ ⎝ VT (a) (i) (ii) (iii) (iv)

⎞ ⎤ ⎟⎟ − 1⎥ ⎠ ⎦⎥

(

)

(

)

(

)

(

)

(

)

⎛ 0.3 ⎞ I D = 10 −11 exp⎜ ⎟ ⇒ 1.03 μ A ⎝ 0.026 ⎠ ⎛ 0.5 ⎞ I D = 10 −11 exp⎜ ⎟ ⇒ 2.25 mA ⎝ 0.026 ⎠ ⎛ 0.7 ⎞ I D = 10 −11 exp⎜ ⎟ ⇒ 4.93 A ⎝ 0.026 ⎠ ⎡ ⎛ − 0.02 ⎞ ⎤ −12 A I D = 10 −11 ⎢exp⎜ ⎟ − 1⎥ = −5.37 × 10 ⎣ ⎝ 0.026 ⎠ ⎦

(v)

⎡ ⎛ − 0.20 ⎞ ⎤ −11 I D = 10 −11 ⎢exp⎜ ⎟ − 1⎥ ≅ −10 A 0 . 026 ⎠ ⎦ ⎣ ⎝

(vi)

I D = − 10 −11 A

(b) (i) (ii) (iii)

(

)

(

)

(

)

(

)

⎛ 0.3 ⎞ I D = 10 −13 exp⎜ ⎟ ⇒ 0.0103 μ A ⎝ 0.026 ⎠ ⎛ 0.5 ⎞ I D = 10 −13 exp⎜ ⎟ ⇒ 22.5 μ A ⎝ 0.026 ⎠ ⎛ 0.7 ⎞ I D = 10 −13 exp⎜ ⎟ ⇒ 49.3 mA ⎝ 0.026 ⎠

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________

(

)

(iv)

⎡ ⎛ − 0.02 ⎞ ⎤ −14 I D = 10 −13 ⎢exp⎜ A ⎟ − 1⎥ = −5.37 × 10 0 . 026 ⎝ ⎠ ⎣ ⎦

(v)

I D ≅ −10 −13 A

I D ≅ −10 −13 A (vi) ______________________________________________________________________________________ ⎛I 1.28 V D = VT ln⎜⎜ D ⎝ IS

⎞ ⎟ ⎟ ⎠

⎛ 10 × 10 −6 (a) (i) V D = (0.026 ) ln⎜⎜ −11 ⎝ 10

⎞ ⎟⎟ = 0.359 V ⎠

⎛ 100 × 10 −6 V D = (0.026 ) ln⎜⎜ −11 ⎝ 10

⎞ ⎟⎟ = 0.419 V ⎠

⎛ 10 −3 ⎞ V D = (0.026) ln⎜⎜ −11 ⎟⎟ = 0.479 V ⎝ 10 ⎠ ⎡ ⎛ V ⎞ ⎤ (ii) − 5 × 10 −12 = 10 −11 ⎢exp⎜ D ⎟ − 1⎥ ⇒ V D = −0.018 V ⎣ ⎝ 0.026 ⎠ ⎦ ⎛ 10 × 10 −6 (b) (i) V D = (0.026 ) ln⎜⎜ −13 ⎝ 10

⎞ ⎟⎟ = 0.479 V ⎠

⎛ 100 × 10 −6 V D = (0.026 ) ln⎜⎜ −13 ⎝ 10 ⎛ 10 −3 V D = (0.026) ln⎜⎜ −13 ⎝ 10

⎞ ⎟⎟ = 0.539 V ⎠

⎞ ⎟⎟ = 0.599 V ⎠

⎡ ⎛ V ⎞ ⎤ (ii) − 10 −14 = 10 −13 ⎢exp⎜ D ⎟ − 1⎥ ⇒ V D = −0.00274 V ⎣ ⎝ 0.026 ⎠ ⎦ ______________________________________________________________________________________

1.29

(a)

(b)

VD

⎛ 0.7 ⎞ 10−3 = I S exp ⎜ ⎟ ⎝ 0.026 ⎠ I S = 2.03 × 10 −15 A I D ( A ) ( n = 1)

I D ( A )( n = 2 )

0.1 9.50 ×10 1.39 ×10 −14 0.2 4.45 ×10 −12 9.50 ×10 −14 0.3 2.08 ×10 −10 6.50 ×10 −13 − 9 0.4 9.75 ×10 4.45 ×10 −12 0.5 4.56 ×10 −7 3.04 ×10 −11 − 5 0.6 2.14 ×10 2.08 ×10 −10 0.7 10 −3 1.42 ×10 −9 ______________________________________________________________________________________ −14

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 1.30 (a) I S = 10 −12 A

VD(v) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 (b)

ID(A) 4.68 ×10−11 2.19 ×10−9 1.03 ×10−7 4.80 ×10−6 2.25 ×10−4 1.05 ×10−2 4.93 ×10−1

log10ID −10.3 −8.66 −6.99 −5.32 −3.65 −1.98 −0.307

I S = 10 −14 A

VD(v) ID(A) log10ID −13 −12.3 0.10 4.68 ×10 − 11 −10.66 0.20 2.19 ×10 − 9 −8.99 0.30 1.03 ×10 −8 −7.32 0.40 4.80 ×10 − 6 −5.65 0.50 2.25 ×10 −4 −3.98 0.60 1.05 ×10 − 3 −2.31 0.70 4.93 ×10 ______________________________________________________________________________________ 1.31 a. ⎛ V − VD1 ⎞ ID2 = 10 = exp ⎜ D 2 ⎟ I D1 ⎝ VT ⎠ ΔVD = VT ln (10) ⇒ ΔVD = 59.9 mV ≈ 60 mV

b.

ΔVD = VT ln (100 ) ⇒ ΔVD = 119.7 mV ≈ 120 mV

______________________________________________________________________________________ 1.32

⎛ 2 ⎞ (a) (i) V D = (0.026) ln⎜ ⎟ = 0.539 V −9 ⎝ 2 × 10 ⎠ ⎛ 20 ⎞ (ii) V D = (0.026) ln⎜ ⎟ = 0.599 V −9 ⎝ 2 × 10 ⎠ ⎛ 0.4 ⎞ (b) (i) I D = 2 × 10 −9 exp⎜ ⎟ ⇒ 9.60 mA ⎝ 0.026 ⎠ ⎛ 0.65 ⎞ (ii) I D = 2 × 10 −9 exp⎜ ⎟ ⇒ 144 A ⎝ 0.026 ⎠ ______________________________________________________________________________________

(

)

(

)

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 1.33 ⎛I ⎞ ⎛ 2 × 10−3 ⎞ = 0.6347 V VD = Vt ...


Similar Free PDFs