Semiconductor Physics and Devices - Donald A. Neamen 3rd Edition Solutions PDF

Title Semiconductor Physics and Devices - Donald A. Neamen 3rd Edition Solutions
Author Musical Mayhem
Course Electronic Devices
Institution Birla Institute of Technology and Science, Pilani
Pages 188
File Size 4.3 MB
File Type PDF
Total Downloads 11
Total Views 157

Summary

Solutions to the book Semiconductor Physics and Devices - Donald A. Neamen 3rd Edition...


Description

Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual

Chapter 1 Problem Solutions

Chapter 1 Problem Solutions

GHF 4π3r JKI 3

4 atoms per cell, so atom vol. = 4

1.1 (a) fcc: 8 corner atoms × 1/8 = 1 atom 6 face atoms × ½ = 3 atoms Total of 4 atoms per unit cell

Then

FG 4πr IJ H 3 K × 100% ⇒ 3

4 Ratio =

(b) bcc: 8 corner atoms × 1/8 = 1 atom 1 enclosed atom = 1 atom Total of 2 atoms per unit cell

Ratio = 74%

3

16 2 r (c) Body-centered cubic lattice 4 d = 4r = a 3 ⇒ a = r 3

(c) Diamond: 8 corner atoms × 1/8 = 1 atom 6 face atoms × ½ = 3 atoms 4 enclosed atoms = 4 atoms Total of 8 atoms per unit cell

3

Unit cell vol. = a =

F 4 rI H3K

3

GHF 4π3r JKI 3

2 atoms per cell, so atom vol. = 2

1.2 (a) 4 Ga atoms per unit cell Density =

Then

4

b

5.65 x10

−8

g

3

FG 4πr IJ H 3 K × 100% ⇒ Ratio = F 4r I H 3K



3

2

Density of Ga = 2.22 x1022 cm

−3

4 As atoms per unit cell, so that 22 −3 Density of As = 2.22 x10 cm

(d) Diamond lattice

(b)

Body diagonal = d = 8r = a 3 ⇒ a =

8 Ge atoms per unit cell 8 Density = ⇒ −8 3 5.65x10

b

Ratio = 68%

3

g

Unit cell vol. = a 3 =

22

− Density of Ge = 4.44 x10 cm

3

F 8r I H 3K

8

r

3 3

FG 4πr JI H 3K 3

8 atoms per cell, so atom vol. 8 1.3 (a) Simple cubic lattice; a = 2 r

Then

Unit cell vol = a = ( 2r) = 8r 3

3

FG 4πr IJ H 3 K × 100% ⇒ Ratio = F 8r I H 3K 3

3

8

FG 4πr IJ H3K 3

1 atom per cell, so atom vol. = (1)

3

Then

FG 4πr IJ H 3 K × 100% ⇒ Ratio =

Ratio = 34%

3

1.4 From Problem 1.3, percent volume of fcc atoms is 74%; Therefore after coffee is ground, 3 Volume = 0.74 cm

Ratio = 52.4% 3 8r (b) Face-centered cubic lattice d d = 4r = a 2 ⇒ a = =2 2r 2

c

3 Unit cell vol = a = 2 2 r

h

3

3 = 16 2 r

3

Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual

Chapter 1 Problem Solutions

Then mass density is 1.5 (a) a = 5.43 A

°

8

From 1.3d, a =

ρ= r

3 a 3

neighbor = 2r ⇒ 2.36 A

= ρ=

N ( At. Wt. )

a = 4.62 A

1.9 (a) Surface density 1 1 = 2 = a 2 4.62 x10 −8

°

b

2 rA + 2 rB = a 3 ⇒ 2 rB = 2.04 3 − 2.04 °

so that r B = 0.747 A (b) A-type; 1 atom per unit cell 1 Density = ⇒ −8 3 2.04 x10

14

23

. x 10 cm Density(B) = 118

1.10 (a) Vol density =

−3

1 3

ao Surface density =

1.7 (b)

1 2

ao

b2.8 x10 g −8

°

22

3

2

(b) Same as (a)

(c) Na: Density =

g

2

⇒ 2

−2

−3

B-type: 1 atom per unit cell, so

12

−3 22 1.01x10 cm

Same for A atoms and B atoms (b) Same as (a) (c) Same material

Density(A) = 118 . x 10 cm

a = 18 . + 1.0 ⇒ a = 2.8 A

−3 22 ⇒ 1.01x10 cm

3.31x10 cm

g

23

3

(b) Same as (a) (c) Same material

1.6

b

−8

−8

3

(a) a = 2r A = 2(1.02) = 2.04 A Now

1

b 4.62x10 g 1 Density of B = b 4.62x 10 g ⇒

6. 02 x1023

ρ = 2.33 grams / cm

3

°

Density of A =

b 5x10 g (28.09) ⇒

NA



(a) a 3 = 2 (2.2 ) + 2(1.8) = 8 A° so that

22

=

3

−8

1.8

°

g

(c) Mass density

b2.8x10 g

°

(b) Number density 8 −3 22 = ⇒ Density = 5 x10 cm −8 3 5.43x10

b

23

ρ = 2.21 gm / cm

( 5. 43) 3

= = 118 . A 8 8 Center of one silicon atom to center of nearest so that r =

4.85x 10−

= 2.28 x10 cm

1.11 Sketch

−3

1.12 (a)



Cl: Density (same as Na) = 2.28 x1022 cm 3 (d) Na: At.Wt. = 22.99 Cl: At. Wt. = 35.45 So, mass per unit cell 1 1 ( 22.99) + (35 .45) −23 2 = 2 = 4.85x10 23 6.02 x10

(b)

4

F 1 , 1 , 1I ⇒ (313) H 1 3 1K FH 1 , 1 , 1 IK ⇒ (121) 4 2 4

Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual 1.13 (a) Distance between nearest (100) planes is: d = a = 5.63 A

=

°

d = 3.98 A

(iii)

or

(iii)

F KI H c h b

3 4.50 x10 −8

1 3a

2

g

2

14

cm −2

14

(iii)

g

. x1015 cm−2 114

g

−2

b

g

b

g

d = 4r = a 2 then 4r 4(2.25) a= = = 6.364 A ° 2 2 (a) 4 atoms Volume Density = −8 6 .364 x10

−2

b

(110) plane, surface density, 2 atoms −2 14 ⇒ 6 .99 x10 cm −8 2 2 4.50 x10

b

b

1.16 ⇒ 2.85 x10

Same as (a),(i); surface density 4.94x 10 cm

=

KI

(b) (110) plane, surface density, 4 atoms −2 14 = ⇒ 9.59 x10 cm −8 2 2 5.43x 10 (c) (111) plane, surface density, 4 atoms −2 14 = ⇒ 7.83 x10 cm −8 2 3 5.43x 10

(b) Body-centered cubic (i) (100) plane, surface density, (ii)

F H

6.78x 10 cm

g

1

g

b

(110) plane, surface density, 1 atom −2 14 ⇒ 3.49 x10 cm −8 2 2 4.50x 10

(111) plane, surface density, 1 1 atoms 3 6 2 = = = 1 1 a 3 a 2 ( x) ⋅a 2 ⋅ 2 2 2

=

b

14

g

b

(110) plane, surface density, 2 atoms −2 14 ⇒ 6.99 x10 cm 2 −8 2 4.50x 10

1.15 (a) (100) plane of silicon – similar to a fcc, 2 atoms surface density = ⇒ −8 2 5.43 x10

°

=

−2 14 ⇒ 9.88 x10 cm

°

Simple cubic: a = 4.50 A (i) (100) plane, surface density, 1 atom −2 14 = ⇒ 4.94 x10 cm −8 2 4.50 x10 (ii)

2

(111) plane, surface density, 1 1 3⋅ + 3 ⋅ 4 6 2 = = −8 2 3 2 3 4.50x 10 a 2

°

1.14 (a)

b

b4.50 x10 g −8

=

(c) Distance between nearest (111) planes is: 5.63 1 a = d = a 3 = 3 3 3 or d = 3.25 A

2 atoms

(ii)

(b)Distance between nearest (110) planes is: 5.63 1 a = d = a 2 = 2 2 2 or

Chapter 1 Problem Solutions

g

. x10 22 cm− 3 155 (b) Distance between (110) planes, a 6 .364 1 = a 2 = = ⇒ 2 2 2 or

(111) plane, surface density, 14

−2

Same as (a),(iii), surface density 2.85 x10 cm (c) Face centered cubic (i) (100) plane, surface density

5

g

3



Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual 4.50 A

Chapter 1 Problem Solutions

°

1.20

(c) Surface density 2 atoms = = 2 2a

b5 x10 g(30.98 ) ⇒ b5 x10 g(28.06) 16

(a) Fraction by weight ≈ 2

b

2 6. 364 x10

−8

g

2



. x10 6 110 (b) Fraction by weight

or 14

3.49 x10 cm

22

b10 g(10. 82) ≈ b5x10 g( 30.98) + b5x10 g( 28.06) ⇒ 18

−2

16

1.17

22



22

6 7.71x 10

−3

Density of silicon atoms = 5x 10 cm and 4 valence electrons per atom, so −3 23 Density of valence electrons 2x 10 cm

1.21 Volume density =

1 d

1.18 Density of GaAs atoms 8 atoms −3 22 = = 4.44x 10 cm −8 3 5.65x 10

b

−6 ° d = 7.94x 10 cm = 794 A °

We have aO = 5.43 A So d d 794 = 146 = ⇒ aO a O 5.43

An average of 4 valence electrons per atom, 23

Density of valence electrons 1. 77x 10 cm

−3

1.19 16

2 x10 5x 10

22

1x10

15

5x10

22

x100% ⇒

−5

4 x10 % (b) Percentage =

= 2 x10 cm

So

g

(a) Percentage =

15

3

x100 % ⇒



6 2 x10 %

6

−3

Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual

Chapter 2 Problem Solutions

Chapter 2 Problem Solutions

p = 5.4 x10

2.1 Computer plot

λ=

2.2 Computer plot

h

−25

kg − m / s

− 34

=

p

6 .625 x10

− 25



5. 4 x 10

or

λ = 12.3 A

2.3 Computer plot

°

(ii) K.E. = T = 100 eV = 1.6x 10 2.4 For problem 2.2; Phase =

p=

2 πx

− ωt = constant

λ

λ=

For problem 2.3; Phase =

2 πx

λ

h

p = 5.4 x10

− 24

J

kg − m / s

⇒ λ = 1.23 A°

p

Then dx 2 π dx λ = v = +ω ⋅ − ω = 0 or dt 2π λ dt

FH KI

p

2mT ⇒

−17

− (b) Proton: K.E. = T = 1 eV = 1. 6 x10 19 J

p=

2 mT =

b

gb

2 1.67 x10 −27 1.6 x10 −19

or

+ ωt = constant

p = 2.31 x10 −23 kg − m/ s

Then dx 2 π dx λ ⋅ + ω = 0 or = vp = −ω dt 2π λ dt

F I H K

λ=

h p

=

6 .625 x10−34 2.31 x10

− 23



or

λ = 0.287 A

2.5 E = hν =

hc

λ

⇒λ =

hc E

b

. x10 Gold: E = 4 .90 eV = ( 4 .90) 16

So

− 19

g

(c) Tungsten Atom: At. Wt. = 183.92 − 19 For T = 1 eV = 1.6x 10 J J

p=

b 6.625x 10 gb 3x 10 g ⇒ 2.54x10 λ= (4.90)b1.6x10 g −34

2mT

b

2(183. 92) 1. 66x 10

=

10

−5

− 19

cm

b

Cesium: E = 1. 90 eV = (1. 90) 1. 6 x10 So

− 19

g

b 6.625x 10 gb 3x 10 g ⇒ 6.54x10 λ= (1.90)b 1.6x10 g −34

λ= J

h p

−5

6 .625 x10 3.13x10

−22



λ = 0.0212 A ° cm

(d) A 2000 kg traveling at 20 m/s: p = mv = ( 2000)( 20) ⇒ or

λ = 0.654 µm

p = 4 x 104 kg − m / s

2.6 (a) Electron: (i) K.E. = T = 1 eV = 1 .6 x10

b

− 34

=

or

10

or

2 mT =

gb1. 6x 10 g

. x10 −22 kg = m / s p = 313

− 19

p=

−27

or

or

λ = 0.254 µm

°

gb

2 9.11x10 −31 1.6 x10 −19

−19

λ=

J

g

h p

− 34

=

6 .625 x10 4



4 x10

or

λ = 1.66 x10

or

9

−28

A

°

−19

g

Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual

Chapter 2 Problem Solutions

or

2.7 3

Eavg =

kT =

2

3

. x10 −3 eV E = 1.822 x10 −22 J ⇒ E = 114

(0.0259 ) ⇒

2

Also − 31 4 p = mv = 9.11x 10 2 x10 ⇒

b

or E avg = 0.01727 eV

p = 1822 x10 .

Now p avg =

b

g

b

2 9.11 x10 −31 (0 .01727 ) 1 .6 x10 −19

g

=

p

6 .625 x10 x10 1822 .

λ = 364 A pavg = 7.1 x10

−26

kg − m / s

− 34

=

p

=

λ



− 26

7.1x 10



°

− 34

h

p=

6. 625x 10

− 26

(b)

Now

λ=

kg − m / s

− 34

h

λ=

or

h

g

Now

2 mE avg

=

gb

−26

6 .625 x10 125x 10



−10

p = 5.3 x10 −26 kg − m / s

or

Also °

λ = 93.3 A

p

v= 2.8

=

m

5.3 x10 −26

4

9.11x 10− 31

= 5.82x 10 m / s

or

Ep = hν p =

hc

6

v = 5.82 x 10 cm / s

λp

Now

Now 2

Ee =

pe

2m

and pe =

h

λe

⇒ Ee =

FG h JI 2m H λ K 1

E=

2

hc

λp

FG h IJ = 2mH λ K

2

1

e

e

F 10hIJ = G 2mH λ K

=

b

2

b 9.11x 10 gb5.82x10 g 2 1

−31

2.10

2

1

(a) E = h ν =

p

hc

λ

b 6.625x10 gb 3x10 g 1x10 −15

8

− 10

J

Now hc

λp

hc

=

2

⋅ 2 mc =

100h −31

E = e ⋅ V ⇒ 1.99 x10

2 mc 100

gb3 x10 g 8



(b) p =

b

2mE =

2 9.11x10

= 6. 02x 10

J = 10. 3 keV

b9.11x10 gb2 x10 g 2 −31

−31

gb1.99 x10 g

kg − m / s

Then

2.9 1

g

3

λ= mv2 =

b

− 19 = 1.6 x10 V

V = 12.4 x 10 V = 12.4 kV

2

− 23

− 15

E = 1. 64 x 10

− 15

so

So

2

E = 9.64 x10 eV

− 34

=

E = 1. 99 x10

100

1

2

or

2 9.11 x10

(a) E =

4

−3

E = 1.54 x10− 21 J ⇒

which yields 100h λp = 2mc Ep = E =

2

mv =

or

Set E p = E e and λ p = 10λ e Then

1

4

2

10

h p

=

6. 625x 10

−34

− 23

6. 02x 10



° λ = 0.11 A

−15

Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual

Chapter 2 Problem Solutions

2.11 h

(a) ∆p =

∆x

− 34

=

1. 054x 10

(b) ∆t =



−6

10

∆p = 1.054 x10 −28 kg − m / s

= hc

−20

2.12 1 .054 x10

(a) ∆p =

(b) ∆E =

1



(∆p )

2

=

m

2

∆E = 7.71 x10

1

5 x10

2

2

(∆p )2



m

∆E = 7.71x10

−26

=

1 2

b 8.78 x10 g ⋅ −26

5x 10

−26

kg − m / s

∂t

−26

2





2

Ψ1( x , t) + Ψ2( x , t)

2

equation, then we could write

2

−h



2

2



2m ∂x 2

aΨ ⋅ Ψ f +V (x )aΨ ⋅ Ψ f 1

2

1

2

−7

J ⇒ ∆E = 4.82 x10 eV

= jh

2.14 ∆p =

∂Ψ1(x , t )

∂ Ψ1 ( x, t ) + Ψ2 ( x, t ) ∂t which is Schrodinger’s wave equation. So Ψ1 ( x , t ) + Ψ2 ( x , t ) is also a solution. (b) If Ψ1 ⋅ Ψ2 were a solution to Schrodinger’s wave

2.13

1

+V (x )Ψ1 (x , t ) = j h

= jh

J ⇒ ∆E = 4.82 x10 −4 eV

(b)

∂x

2

+V ( x ) Ψ1 ( x, t ) + Ψ2 ( x, t )

− 29

(a) Same as 2.12 (a), ∆p = 8.78 x10

∂ Ψ1 ( x, t ) 2



2m ∂x

b8 .78x10 g ⇒

2 −23

−h

−26



s

∂Ψ2 ( x, t ) − h 2 ∂ 2Ψ2 (x , t ) + V ( x )Ψ2 ( x, t ) = jh ⋅ 2 ∂x 2m ∂t Adding the two equations, we obtain

−34

= ⇒ − 10 12 x10 ∆x ∆p = 8. 78 x10 −26 kg − m / s

∆E =

2

−h

J ⇒ ∆E = 0.198 eV

2m and h

−16

Schrodinger’s wave equation, then

or ∆E = 3.16 x10

g⇒

2.16 (a) If Ψ1 ( x , t ) and Ψ2 ( x , t ) are solutions to

− 28

8

b

(1) 1.6 x10 −19

∆t = 6.6 x10

F pI = pc H hK λ So ∆E = c( ∆p) = b3 x10 gb1.054 x10 g ⇒ hc

−34

or

(b)

E=

1.054 x10

∂ ∂t

aΨ ⋅Ψ f 1

2

which can be written as

h ∆x

=

1. 054x 10−34 10 −2

p = mv ⇒ ∆v =

∆p

=

m

= 1.054 x10 1.054 x10 −32 1500

LMΨ ∂ Ψ + Ψ ∂ Ψ + 2 ∂Ψ ⋅ ∂Ψ PO 2m N ∂x ∂x Q ∂x ∂x LM ∂Ψ + Ψ ∂Ψ PO +V ( x)Ψ ⋅ Ψ = j h Ψ N ∂ t ∂t Q Dividing by Ψ ⋅ Ψ we find 1 ∂ Ψ 1 ∂Ψ ∂Ψ O −h L 1 ∂ Ψ + ⋅ ⋅ + M P Ψ Ψ ∂ x ∂x Q 2 m N Ψ ∂x Ψ ∂x L 1 ∂Ψ + 1 ∂Ψ PO +V (x ) = jh M NΨ ∂t Ψ ∂x Q −h

− 32



−36

1

2

1

2

2

1

2

1

m/s

2

2

2
...


Similar Free PDFs