semiconductor physics ex solution PDF

Title semiconductor physics ex solution
Author 가명
Course electrical engineering
Institution 홍익대학교
Pages 34
File Size 669.9 KB
File Type PDF
Total Downloads 149
Total Views 770

Summary

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 1By D. A. Neamen Exercise Solutions ####### Chapter 1Exercise SolutionsEx 1.(a) Number of atoms per unit cell6 421 8 81     (b) Volume Density3 83 25 104 4   a22  21  10 cm 3 Ex 1.Intercepts of plane; p=1, q=2, s=In...


Description

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 1 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

Chapter 1 TYU 1.2 (a) Number of atoms per (100) lattice plane 1  4  1 4 1 1 Surface Density  2  2  a 4.65  10 8

Exercise Solutions Ex 1.1 (a) Number of atoms per unit cell 1 1  8  6  4 8 2 4 4 (b) Volume Density  3  a 4.25 10  8







3

 5.21 10 22 cm 3 _______________________________________

Ex 1.2 Intercepts of plane; p=1, q=2, s=2 1 1 1  Inverse;  , ,  1 2 2  Multiply by lowest common denominator,  211 plane _______________________________________ Ex 1.3 (a) Number of atoms per (100) plane 1  1 4  2 4 2 2 Surface Density  2  a 4.25 10  8





2

= 4.62 10 cm (b) Number of atoms per (110) lattice plane 1  4  1 4 Surface Density 1 1    a a 2 4.65 10 8 2 2 14

  



2

 3.27 10 cm (c) Number of atoms per (111) lattice plane 1 1  3  6 2 1 Lattice plane area  bh 2 14

where b  a 2 2  2   1 h  a 2   a 2     2 

 



2

1/ 2

1/ 2

Test Your Understanding Solutions

 1  3  2 a 2  a 2  a 2 2   Then lattice plane area  3 1 3 2  a 2 a   a   2 2  2 Surface Density 1 2   2.67  1014 cm 2 3 8 2 4.65 10 2 _______________________________________

TYU 1.1

TYU 1.3

 1.11 10 cm 2 (b) Number of atoms per (110) plane 1 1  2  4   2 2 4 Surface Density 2 2    a a 2 4.25 10 8 15

  



 

2

2

2

 7.83 10 cm _______________________________________ 14

Number of atoms per unit cell  8  Volume Density  4 10 22 

1 1 8

1 a3 o

8  a  2.92 10  cm  2.92 A o

Radius  r  a 2  1.46 A _______________________________________





o

(a) For (100) planes, distance  a  4.83 A (b) For (110) planes, distance o a 2 4.83 2   3.42 A 2 2 _______________________________________



Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 1 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

TYU 1.4 (a) 8 corner atoms (b) 6 face-centered atoms (c) 4 atoms totally enclosed _______________________________________ TYU 1.5 Number of atoms in the unit cell 1 1  8   6  4  8 8 2 8 8 Volume Density  3   a 5.43 10 8





3

 5 10 22cm 3 _______________________________________

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

Chapter 2 Exercise Solutions Ex. 2.1 (a)

E  h 

(b) E n 

6.62510 3 10   34

hc

100 10 8  1.9875 10  17J 1.9875 10 17  124 eV or E  1.6 10 19 hc 6.625 10 34 3 1010 (b) E    4500 10 8  4.417 10  19 J







10



2ma

2

1.054 10   n 21.67  10 12 10  34

2

2

2

10 2

27

 2.28 10 n J 2.27967 10 23 n 2 or E n  1.6  10  19  1.425 10  4 n 2eV 23



2

Then E1  1.425  10 4eV 

E 2  5.70 10 4 eV

19

4.417 10  2.76 eV 1.6  1019 _______________________________________ E

or

 2  2 n2

E3  1.28 10  3 eV _______________________________________

Ex 2.4

Ex 2.2







 2 9.11 10 31 12 10 3 1.6 10 19



1/ 2

 5.915 10  26 kg-m/s h 6.625 10  34   1.12  10 8 m p 5.915 10  26





o

or   112 A h 6.625 1034 (c) p    112 10 10  5.915 10  26kg-m/s





 26 2

1 p 1 5.915 10  2 m 2 2.2 10 31 =7.952 10  21J 21 7.952 10  4.97 10 2 eV or E  1.6 10 19 _______________________________________ 2

E

Ex 2.3

 

1 1 2 9.11 10 31 105 m  2 2  4.555 10 21J Now E

(a) p  2mE

k2 

2m Vo  E  2

2

Set Vo  3E

Then k2  

1 2 m2 E  

2 9.11 10 24.555 10   31

1.054 10

 21 1 / 2

 34

or k2  1.222 10 9 m 1

P  exp 2k 2 d o

 (a) d  10 A  10 10 10 m P  exp   2 1.222 109 10 10 10 or P  0.0868  8.68%

 





o

 2  2n 2 (a) E n  2ma 2

1.054 10   n 2  9.11 10 12 10  34 2



31

2

2

10 2

 4.179 10  20 n 2 J  20

or E n 

4.179 10 n 2  0.261n eV 19 1.6  10  2

Then E1  0.261eV, E 2  1.045 eV, E 3  2.351 eV

 (b) d  100 A  100 10 10 m P  exp  2 1.222 109 100 10 or P  2.43 10 11  2.43 10 9 %

 



10



_______________________________________

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________ TYU 2.2 (a) E  0.8 1.6 10 19 1.28 10 19 eV

Ex 2.5



2mV O  E (a) k2  2





  1.054 10   8.23 10 16 s 19 E 1.28 10 (b) Same as part (a), t  8.23 10  16 s _______________________________________ 34



 

2 9.11 10 31  1.2  0.12 1.6 10  19





1.054 10

 t



34 2

 5.3236 10 m 1 Then  0.12  0.12  T  16  1   1.2   1.2   9

TYU 2.3 (a) k2 

 



 exp 2 5.3236 109 5 10 10



3

T  7.02  10  0.12  0.12  (b) T  16 1   1.2   1.2 

 



2m V O  E  2





 







 



2 9.11 10 31 0.8  0.1 1.6 10 19

1.054 10

 34 2

= 4.286 10 m 1  0.1  0.1  T  16  1    0.8  0.8  9



 exp 2 5.3236 109 25 10 10



 12

T  3.97 10 _______________________________________ Ex 2.6

From Example 2.6, we have 13.58 0.0992 En   eV 2 2 n2 11.7  n E 1  99.2 meV, E 2   24.8meV, E 3  11.0 meV _______________________________________

 

 exp 2 4.2859 109 12 10 10 5

T  5.97 10

(b) k 2 





2 9.11 10 31 1.5  0.11.6 10 19

1.054 10

 6.061 10 m 1  0.1  0.1  1   T  16   1.5  1.5 

 34 2

9

 



 exp 2 6.061 109 12 10 10



7

T  4.79 10 _______________________________________

Test Your Understanding TYU 2.1 34

 1.054 10  8  1010 x  1.318 10 25 kg-m/s  d  p 2  dE   p (b) E    p     dp  dp  2m  p p 2p   p  2m m 23 25 1.2  10  1.318 10  E   31 9.11 10  1.735 10 18 J or  10.85 eV _______________________________________

(a)  p 







TYU 2.4 T  5  10  6

 0.08  0.08   16 1   exp  2 k 2 a 0.8   0.8  so that exp  2 k2 a   2.88 10 5 2k 2a  12.571 k2 







2 9.11 10 31  0.8  0.08 1.6 10  19

1.054 10 



34 2

 4.3467 10 m 1 Then 12.571 a  1.446 10 9 m 2 4.3467 109 9





o

or a  14.46 A _______________________________________

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 3 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

Chapter 3 Ex 3.3

Exercise Solutions

4 2m 3 / 2

(a) N 

Ex 3.1 1 E  m 2 2

1 dE  2 m   d  m   d 2 or  

 





4 2 9.11 10

N  1.28 10 22 cm 3 (b) N 

4 2m 3 / 2 2 3 / 2  E h3 3





 1.189 10 Then E  E3  E 2



4 2m p



2

 4.5 10 



10 2



4 2m p h

J 

3/ 2

E  E  dE



3/ 2

3

E   2 3/ 2   E   E   E kT  3 



4 20.56 9.11 10  31



3/ 2

 6.625 10    2    1 0.02591.6 10  3  34 3

 19

 3.929 10  J 19



Or 





h3

E  kT

 18

3.929 1019

 2.46eV

1.6  10 19 _______________________________________



3/ 2

N  8.29 10 21 cm 3 _______________________________________

 1.189 10 18  7.958 10 19

E 



or

2 ma2

2 9.11 10



 8.29 10 27 m 3

E

31

1eV

 1.06286 10 2 3/ 2 3/ 2 2 1 1.6 10 19  3

N

2 2 1.054 10 34 

2eV

56

2 2 2  

m 3

or

Ex 3.4

or

E3

28

 1.28 10

2mE 3  a  2 2

3/ 2

 19

 1.76  10  6 m/s

or E 2  7.958 10 19J. At ka  2 , we see that  3 a  2 so

0

3/ 2

34 3

  

Ex 3.2 At ka   , we have sin a 1  8  cos  a a From Example 3.2, we have  2 a  5.141,

2 eV

  6.625 10  2  21.6  10  3 31

19

or    1.76  10 4 cm/s _______________________________________

E  dE

0

4 2m 3 / 2 2 3 / 2  E 3 h3

10  1.6  10  E  31 5 m 9.1110 10 12



h3



So

2 eV

3/ 2



 7.92 10 24 m 3 or N  7.92 10 18 cm  3 _______________________________________

Ex 3.5

g i! 10 9 8!   45 10!   Ni ! gi  N i ! 8!10  8!  8! 21 _______________________________________

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 3 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

Ex 3.6

   E  EF  (a) f F E   exp  kT     E c  kT 4  E F   exp   kT      0.30  0.0259 4  exp   0.0259    7.26 10  6    E  EF  (b) f F E   exp  kT  

   0.30  0.0259   exp   0.0259    3.43 10  6 _______________________________________

Then

  E  E F   exp   0.02 kT  

 1    3.9kT E E F  kT ln  0.02  _______________________________________

Test Your Understanding Solutions TYU 3.1 At ka  2 , we see that  3 a  2 , so 2 mE3



2

or

E3 

Ex 3.7

  E  E F  f F E   exp   kT  

  0.30  0.025  8 10 6  exp   kT     0.325 5 exp    1.25 10  kT 





0.325  ln 1.25 105  11.736 kT 0.325  T  kT   0.02769  0.0259   11.736  300  so T  321 K _______________________________________ Ex 3.8    E  EF  exp  kT  

1 E EF  1  exp   kT 

 0.02 1  E  EF  1  exp    kT    E  E F   E  E F  exp  1  exp   1  0.02 kT    kT 

 a  2

2 2  2 2 ma 2

 2 2 1.054 10 34 

2







2 9.11 10 31 4.5  1010



2

 1.189 10  18 J At the other point,  4 a is in the range 2   4 a  3 . Then from sin  4 a 1  8  cos  4 a 4 a we find, by trial and error,  4a  7.870. Then E4 

7.8702 2 2ma 2

 7.8702 1.054 1034 

2







2 9.11 10 31 4.5  1010



2

 1.8649 10  18J Then Eg  E 4  E 3  1.8649 10 18 1.189 10 18  6.762 10  19 J or 6.762 10  4.23eV 19 1.6 10  _______________________________________ 19

Eg 

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 3 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

TYU 3.2 From Example 3.2, for ka   ,   1 a   and E1  2.972  10 19 J. For 0  a   and ka  0 , we have sin  a 1  8  cos a a By trial and error,  a  2.529 rad. Then 2mE  a  2.529 2 E

2.5292  2 2ma 2

or



2 9.11 10

4.5 10 

10 2

 1.9258 10 19J Then E  2.972 10 19 1.9258 10 19  1.046 10 19 J or 19 1.046 10 E   0.654eV 19 1.6  10 _______________________________________

 Ec  0.32  E c 1.6 10 19      C1   10  10 10

2

so that C1  5.1876 10 39 We have 2 2 m   m  2 C1 m o 2 mo C 1

1.054 10  2 9.11 10 5.1876 10  34 2

31

39

or m  1.175 mo _______________________________________

TYU 3.4 We have E  E  C 2 k 2

E   0.875  E  1.6 10 19      C 2   10  12 10 

so that C 2  2.0426 10 38

 2 mo C2

1.054 10  2 9.11 10 2.0426 10 

m p mo

 31

 38

 0.2985

TYU3.5 1  E  EF  1 exp   kT    E F  E   exp  kT      0.35   0.0259 2 (a) 1 f F  E  exp   0.0259   1  f F E   1 

 8.20 10  7    0.35  3 0.0259 2  (b) 1 f F  E  exp   0.0259    3.02 10 7 _______________________________________

TYU 3.3 We have E  E c  C1 k 2



mo

2



_______________________________________

 2.5292 1.054 10 34   31

m p

34 2



2



We have

2

TYU 3.6 400  We find kT  0.0259   0.034533eV 300    E c  kT 4  E F  (a) f F E   exp   kT     0.30  0.034533 4   exp  0.034533    1.31 10 4    0.30 0.034533 (b) f F E   exp   0.034533    6.21 10 5 _______________________________________

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 3 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

TYU 3.7  400  We find kT  0.0259    0.034533  300    0.35  0.034533 2   (a) 1 f F  E  exp  0.034533    2.41 10 5    0.35 3 0.034533 2  (b) 1 f F  E  exp  0.034533    8.85 10  _______________________________________ 6

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 4 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

Chapter 4 Exercise Solutions Ex 4.1

ni  3.29 10 9 cm 3 For T  250 K,

  E  E F  f F  exp   kT     E c kT  E F   exp   kT     0.25  0.0259    exp   0.0259   f F  2.36 10





 5.09 10 7

5

or ni  7.13 10 3 cm 3

(b)



n o  3.02 10 13 cm 3 _______________________________________

n i 400 3.288 109  4.61 10 5  n i 250 7.135 103 _______________________________________ Ex 4.4 (a) GaAs

Ex 4.2





 250  (a) N   1.04  1019    300 

 mp  3 kT ln    m  4  n  3  0.48    0.0259 ln  4  0.067    38.25meV

E Fi  E midgap 

3/ 2

 7.9115 10 18 cm 3  250  kT   0.0259   0.021583eV  300 

(b) Ge

  E F  E    p o  N exp  kT    0.27    7.9115 10 18 exp    0.021583

3  0.0259 ln 0.37  4  0.55    7.70meV _______________________________________

p o  2.919 10 13cm 3

Ex 4.5





2.919 1013 3 (b) Ratio   4.54  10  6.43 10 15 _______________________________________

Ex 4.3 (a) For T  400 K,







3

 400  n i2  4.7 1017 7  1018    300 

  1.42  exp    0.0259 400 300   1.081 10 19 or



  1.42  exp    0.0259250 300  

  E c  E F   n o  N c exp  kT    0 . 25    4.7 10 17 exp    0.0259 



3

 250  ni2  4.7 1017 7  1018    300 

E Fi  E midgap 

  E F  E  p o  N  exp  kT     0.215  1.04 10 19 exp   0.0259 





 2.58 10 15 cm 3 We find E c  E F  1.12  0.215  0.905eV    E c  E F  n o  N c exp  kT     0.905   2.8 10 19 exp   0.0259 





 1.87 10 4 cm 3 _______________________________________

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 4 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________ Ex 4.6 no 

2



1.5 10

20

pa  po  p a

N c F1 / 2  F 



2



2.8 10 F   19

1/ 2

F

So F1 / 2  F   4.748 From Figure 4.10,  F  3.2 

E F  Ec

kT  E F  E c  3.2 0.0259  0.08288 eV _______________________________________

 250 ...


Similar Free PDFs