Semiconductor Physics and Devices 4th edition Neaman pdf PDF

Title Semiconductor Physics and Devices 4th edition Neaman pdf
Author 28-012-Md Ibrahim Shikder Mahin
Course Electric circuit
Institution Bangladesh University of Business and Technology
Pages 160
File Size 3.4 MB
File Type PDF
Total Downloads 16
Total Views 206

Summary

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 1By D. A. Neamen Problem Solutions Chapter 1Problem Solutions1.(a) fcc: 8 corner atoms 8/1  1 atom6 face atoms  2/1  3 atomsTotal of 4 atoms per unit cell(b) bcc: 8 corner atoms 8/1  1 atom1 enclosed atom =1 atom Total of 2...


Description

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________

Chapter 1 Problem Solutions 1.1 (a) fcc: 8 corner atoms1 / 8  1 atom 6 face atoms 1 / 2  3 atoms Total of 4 atoms per unit cell (b) bcc: 8 corner atoms 1 / 8  1 atom 1 enclosed atom =1 atom Total of 2 atoms per unit cell (c) Diamond: 8 corner atoms 1 / 8  1 atom 6 face atoms1 / 2  3 atoms 4 enclosed atoms = 4 atoms Total of 8 atoms per unit ce ll _______________________________________ 1.2 (a) Simple cubic lattice: a  2r Unit cell vol  a 3  2r 3  8r 3

 4 r 3   1 atom per cell, so atom vol  1  3    Then  4 r 3    3   Ratio  100 %  52.4% 3 8r (b) Face-centered cubic lattice d d 4r  a 2  a   2 2 r 2



Unit cell vol  a 3  2 2  r



3

 4   r  Unit cell vol  a    3 

Ratio 

 4r     3 (d) Diamond lattice

3

100%  68%

8

Body diagonal  d  8 r  a 3  a   8r  3  Unit cell vol  a     3

r

3

3

 4 r 3   8 atoms per cell, so atom vol  8   3    Then  4 r 3   8    3  Ratio  100%  34% 3  8r     3 _______________________________________

o

(a) a  5.43 A ; From Problem 1.2d, a

8

r

3

   

o a 3 5.43 3   1.176 A 8 8 Center of one silicon atom to center of

Then r 

o

nearest neighbor  2r  2.35 A (b) Number density 8  5  10 22 cm 3  3 5.43 10 8 (c) Mass density N At .Wt . 5  10 22 28.09    NA 6.02 10 23









   2.33 grams/cm 3 _______________________________________

3

3

 4 r 3 2 atoms per cell, so atom vol   2  3 

 4 r 3     3 

2 

1.3

 16 2  r 3

 4 r 3 4 atoms per cell, so atom vol   4  3  Then 4 3  4  r   3   100%  74% Ratio  16 2  r 3 (c) Body-centered cubic lattice 4 d  4r  a 3  a  r 3

Then

   

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 1.4 (a) 4 Ga atoms per unit cell 4 Number density  8 5.65  10



o

(b) a  21.035  2.07 A (c) A-atoms: # of atoms  8 



3

Density 

 Density of Ga atoms  2.22 10 22 cm 3 4 As atoms per unit cell  Density of As atoms  2.22 10 22 cm 3 (b) 8 Ge atoms per unit cell 8 Number density  8 3 5.65  10



1.5 From Figure 1.15  a  3   0.4330 a (a) d     2  2 



 3.38 10 cm 3 _______________________________________

# of atoms  8 

o

a 2  2   2 sin      54.74  a 2 3 2   3 2    109.5 _______________________________________ 1.7 o

(a) Simple cubic: a  2r  3.9 A

3

o

 5.515 A  4.503 A 2 4r 

o

 9.007 A

3 _______________________________________

1.8 (a)

21.035 2  21.035  2rB o

rB  0.4287 A

4.510 

8 3





1. 0974 10 12.5  23 6.02 10  0.228 gm/cm3 

(b) a 

4r 3

22

o

 5.196 A

1 # of atoms 8   1  2 8

Number density 

2

5.196 10 

8 3

 1.4257 1022 cm 3 22 1. 4257 10 12.5  Mass density    23 6.02 10 3  0.296 gm/cm _______________________________________



o

(d) diamond: a 

1

 1.097 10 22 cm 3 N  At.Wt . Mass density    NA

1.6

(c) bcc: a 

1 1 8

Number density 

 0.70715.65  d  3.995 A _______________________________________

2



23

o

 a (b) d    2  0.7071a  2

4r

8 3

(a) a  2r  4.5 A

 0.4330 5.65   d  2.447 A

4r

2.07 10 

1.9

o

(b) fcc: a 

1

 1.13 10 23 cm 3 1 B-atoms: # of atoms  6   3 2 3 Density  8 3 2.07  10



 Density of Ge atoms  4.44 10 22 cm 3 _______________________________________

1 1 8



1.10 From Problem 1.2, percent volume of fcc atoms is 74%; Therefore after coffee is ground, Volume = 0.74 cm 3 _______________________________________

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 1.11

o

o

(b) a  1.8  1.0  2.8 A (c) Na: Density 

1 / 2 

2.810 

8 3

 2.28 10 22 cm 3 3 22 Cl: Density  2.28 10 cm (d) Na: At. Wt. = 22.99 Cl: At. Wt. = 35.45 So, mass per unit cell 1  1   22.99   35.45 2 2   4.85 10 23   6.02 10 23 Then mass density 23 4.85 10  2.21 grams/cm 3  3 2.8 10 8 _______________________________________





1.12 o

(a) a 3  22.2  21.8  8 A o

Then a  4.62 A Density of A: 1  1.0110 22 cm 3  8 3 4.62 10 Density of B: 1  1.0110 22 cm 3  3 4.62 10 8 (b) Same as (a) (c) Same material _______________________________________ 1.13









22.2  21.8





2

 4.687 10 14 cm 2 o

For 1.12(b), B-atoms: a  4.619 A 1  4.687 1014 cm 2 2 a For 1.12(a) and (b), Same material

Surface density 

o

For 1.12(b), A-atoms; a  4.619 A Surface density 1  2  3.315 10 14 cm 2 a 2 B-atoms; Surface density 1  2  3.315 1014 cm 2 a 2 For 1.12(a) and (b), Same material _______________________________________ 1.14 (a) Vol. Density 

1 ao3

Surface Density 

1 2 o

a 2 (b) Same as (a) _______________________________________

1.15 (i) (110) plane (see Figure 1.10(b)) (ii) (111) plane (see Figure 1.10(c))

o

 4.619 A 3 (a) For 1.12(a), A-atoms 1 1 Surface density  2  a 4.619 10 8 a

(b) For 1.12(a), A-atoms; a  4.619 A Surface density 1  2  3.315 10 14 cm 2 a 2 B-atoms; Surface density 1   3.315 1014 cm 2 2 a 2

1 1  (iii) (220) plane   , ,   1, 1, 0 2 2  Same as (110) plane and [110] direction  1 1 1 (iv) (321) plane   , ,   2, 3, 6   3 2 1 Intercepts of plane at p  2, q  3, s  6 [321] direction is perpendicular to (321) plane _______________________________________

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 1.16 (a)



1 1 1  , ,   313 1 3 1 (b)

1 1 1   , ,   121 4 2 4  _______________________________________ 1.17

 1 1 1 Intercepts: 2, 4, 3   , ,    2 4 3 (634) plane _______________________________________ 1.18 o

(a) d  a  5.28 A o a 2  3.734 A 2 o a 3 (c) d   3.048 A 3 _______________________________________

(b) d 

1.19 (a) Simple cubic (i) (100) plane: Surface density 

1 1  2 a 4.73 10 8





2

 4.47 10 14 cm 2 1 2

a 2  3.16 1014 cm 2 (iii) (111) plane: 1 Area of plane  bh 2 o

where b  a 2  6.689 A Now a 2 h  a 2   2  2

 

2

2

  3 a 2  4 

o 6 So h  4.73   5.793 A 2

 





 6.32 1014 cm 2 (iii) (111) plane: 1 3 6 Surface density  19.3755  10 16  2.58 1014 cm 2 (c) fcc (i) (100) plane: 2 14 Surface density  2  8.94 10 cm 2 a (ii) (110) plane: 2 Surface density  2 a 2  6.32 1014 cm 2 (iii) (111) plane: 1 1 3   3 6 2 Surface density  19.3755  10 16  1.03 10 15 cm 2 _______________________________________

(ii) (110) plane: Surface density 

Area of plane 1  6.68923 10 8 5.79304 10 8 2  19.3755  10 16 cm 2 1 3 6 Surface density  19.3755  10 16  2.58 1014 cm 2 (b) bcc (i) (100) plane: 1 Surface density  2  4.47 1014 cm 2 a (ii) (110) plane: 2 Surface density  a2 2

2

1.20 (a) (100) plane: - similar to a fcc: 2 Surface density  8 2 5.43  10 





 6.78 10 cm 2 14

(b) (110) plane: Surface density 



4

2 5.43  10  8



2

 9.59 1014 cm 2

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 1 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ (c) (111) plane: Surface density 

2

 3 2 5.43 10 

8 2

 7.83 1014 cm 2 _______________________________________

1.21

o 4r 4 2.37    6.703 A 2 2 1 1 8   6 4 8 2 (a) #/cm 3  3 a 6.703 10  8

a



 1.328 10 cm 1 1 4  2  2 4 (b) #/cm 2  a2 2 22



8 2



5  10 17 100%  10 3 % 5  10 22 2 10 15 100 %  4 10 6 % (b) 5  10 22 _______________________________________

3

1.25 (a) Fraction by weight 2 1016 10.82  1.542  10 7  5 1022  28.06 (b) Fraction by weight 18 10 30.98   2.208 10 5 22 5 10  28.06 _______________________________________

 

2

 3.148 10 cm o a 2 6.703 2   4.74 A (c) d  2 2 1 1 (d) # of atoms  3  3  2 6 2 Area of plane: (see Problem 1.19)



o



#/cm 2 



14



1  2 10 16 cm 3 3 d o

6 So d  3.684 10  cm  d  368.4 A



2 3.8909 10 15

= 5.14 10

 

Volume density 

o 6a  8.2099 A 2

Area 1 1 8 8  bh  9.4786 10  8.2099 10  2 2 15 2  3.8909 10 cm

 

1.26

b  a 2  9.4786 A h



(a)

3

2

14



1.24

2

6.703 10 

1.23 Density of GaAs atoms 8  4.44 10 22 cm 3  8 3 5.65  10 An average of 4 valence electrons per atom, So Density of valence electrons  1.77 1023 cm 3 _______________________________________

cm 2

o a 3 6.703  3   3.87 A 3 3 _______________________________________

d

1.22 Density of silicon atoms  510 22 cm 3 and 4 valence electrons per atom, so 23 Density of valence electrons  2 10 cm 3 _______________________________________

o

We have ao  5.43 A 368.4 d   67.85 5.43 ao _______________________________________

Then

1.27 Volume density 

1  4 10 15 cm 3 d3 o

So d  6.30 10  6 cm  d  630 A o

We have ao  5.43 A 630 d  116 ao 5.43 _______________________________________

Then

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Problem Solutions ______________________________________________________________________________________

Chapter 2 2.1 Sketch _______________________________________ 2.2 Sketch _______________________________________ 2.3 Sketch _______________________________________ 2.4 From Problem 2.2, phase 

2 x



 t

= constant Then dx 2 dx        0,   p     dt dt  2  2 x From Problem 2.3, phase   t  = constant Then dx 2 dx        0,   p     dt dt  2  _______________________________________

2.6

6.625  1034  550 10 9  1.205 10  27 kg-m/s p 1.2045 1027  1.32  103 m/s   m 9.11 10  31 5 or   1.32 10 cm/s h 6.625 10 34 (b) p    440  10 9  1.506 10  27 kg-m/s p 1.5057  10 27  1.65 103 m/s   m 9.11 10  31 5 or   1.65 10 cm/s (c) Yes _______________________________________ (a) p 

h



2.7 (a) (i)



 

p  2mE  2 9.11 10 31 1.2  1.6 10 19 25

 5.915  10 kg-m/s  h 6.625  10 34  1.12 109 m   p 5.915  1025 o

or   11.2 A



 

(ii) p  2 9.1110 31 12 1.6  10 19

2.5 hc

hc E  h    E  Gold: E  4.90 eV  4.90 1.6 10  19 J So, 34 10 6.625  10  3  10  2.54  10  5 cm   19 4.90 1.6 10 or   0.254 m



















Cesium: E  1.90 eV  1.90 1.6 10 19 J So, 6.625 10 34 3  1010  6.54  10  5 cm  1.90 1.6 10 19 or   0.654 m _______________________________________













24

 1.87 10 kg-m/s 34 6.625 10   3.54 10 10 m   24 1.8704 10 o

or   3.54 A







(iii) p  2 9.1110 31 120 1.6 10 19 24

 5.915 10 kg-m/s 34 6.625 10  1.12  1010 m  5.915  10  24 o

or   1.12 A





Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ (b)



p  2 1.67 10

27

2.10

1.2 1.6 10  19

 2.532 10  23 kg-m/s 6.625 10  34  2.62  10 11 m  2.532 10  23 o

or   0.262 A _______________________________________

or

3 3 kT    0. 0259  0.03885 eV 2 2

or

Now

pavg  2mEavg

(b)







 2 9.1110 31 0.03885  1.6 10 19



or

or

pavg  1.064  10 25 kg-m/s

h





2.8

E avg 

6.625 10 34 10  85 10 26  7.794 10 kg-m/s p 7.794 10 26  8.56 104 m/s   m 9.11 10 31   8.56 106 cm/s 1 1 E  m  2  9.11 10 31 8.56 10 4 2 2  3.33  10 21 J 3.334  1021 E  2.08  10 2 eV 19 1.6 10  1 2 E  9.11 10 31 8 10 3 2  2.915 10 23 J 2.915  1023 E  1.82  10 4 eV 19 1.6 10  31 8  10 3 p  m   9.1110

(a) p 







Now

h 6.625 10 34  6.225 10 9 m   p 1.064  10 25





2







 7.288 10 27 kg-m/s h 6.625 10 35  9.09 108 m   p 7.288 10  27

or o

  62.25 A

o

_______________________________________

or   909 A _______________________________________

2.9

E p  h



p

2.11

hc

p

(a) E  h  

Now pe2 1  h h  Ee   and pe  2m e 2m   e Set E p  Ee and  p  10 e Then Ee 

1  h    p 2m   e hc

2

 1  10h     2m   p  

   

which yields 100 h p  2 mc

Ep E 



hc

p



2 hc 2 mc  2 mc  100h 100





2

31 8 2 9.11 10  3 10 100  1.64 10 15 J  10.25 keV _______________________________________







 1.99 10

2

2

hc

6.625 10 3 10   34

8

1 10 10

15

J

Now

E 1.99  10  15  19 e 1.6  10  4 V  1.24 10 V  12.4 kV E  e V  V 





31 1.99 10 15 (b) p  2mE  2 9.1110



 23

 6.02  10 kg-m/s Then  h 6.625 10 34  1.10 1011 m   p 6.02  10 23 or o

  0.11 A _______________________________________

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 2.12

 1.054  10 34 p   6 x 10  28 1.054 10 kg-m/s _______________________________________ 2.13 (a) (i) px  

1.054 10  34  8.783 10  26 kg-m/s 10 12 10  2 dE d p  (ii) E     p  p  dp dp  2m  2p pp   p  2m m p 

Now p  2mE



 



 2 9 10 31 16  1.6 10 19 24

 2.147 10 kg-m/s 24 26 2.1466 10  8.783 10  so E   31 9 10 19  2.095 10 J 19 2.095 10  or E   1.31 eV 19 1.6  10   (b) (i) p  8.783 10 26 kg-m/s







 

(ii) p  2 5 10 28 16 1.6 10 19





23

 5.06  10 kg-m/s 23 26 5.06 10 8.783  10 E  28 5  10  21  8.888  10 J 8.888 10 21 or E   5.55  10 2 eV 19 1.6  10  _______________________________________







2.14

 1.054  10 34   1.054 10 32 kg-m/s x 10  2 p 1.054  10 32  p  m    m 1500   7  10 36 m/s _______________________________________ p 

2.15 (a) Et   1.054  10 34  8.23 10 16 s t  0.8 1.6 10 19





 1.054  10 34  x 1.5 1010  7.03  10 25 kg-m/s _______________________________________ (b) p 

2.16 (a) If 1x, t  and 2 x, t  are solutions to Schrodinger's wave equation, then

  x, t    2  2 1 x, t   V  x1 x , t   j 1  2m t x 2 and 2  2 x , t    2  2  x, t  V x 2  x, t  j  2 t 2m x Adding the two equations, we obtain  2  2 1 x ,t   2 x ,t   2 m x 2  V x 1 x , t   2 x , t   1 x, t  2  x, t  t which is Schrodinger's wave equation. So 1 x, t   2 x, t  is also a solution.  j

(b) If 1 x , t  2  x, t were a solution to Schrodinger's wave equation, then we could write 2   2 1   2  V  x1   2   2 m x 2   j 1  2  t which can be written as 2   2   2 1   2   2 2 1     1  2 2 2 x x  2m  x x 1   2  2  V x 1   2   j 1 t  t  Dividing by 1  2 , we find

 2 2m

2  1  2 2 1  1 2 ...


Similar Free PDFs