Semiconductor physics and devices basic principles 4th edition neamen solutions manual PDF

Title Semiconductor physics and devices basic principles 4th edition neamen solutions manual
Author 逵禎 陳
Course Materials science and engineering
Institution 國立臺北科技大學
Pages 14
File Size 357.2 KB
File Type PDF
Total Downloads 31
Total Views 167

Summary

Download Semiconductor physics and devices basic principles 4th edition neamen solutions manual PDF


Description

Semiconductor Physics And Devices Basic Principles 4th Edition Neamen Solutions Manual Full Download: http://alibabadownload.com/product/semiconductor-physics-and-devices-basic-principles-4th-edition-neamen-s Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Problem Solutions ______________________________________________________________________________________

Chapter 2 2.1 Sketch _______________________________________

2.6 (a) p 

h





6.625  10 34

550  10 9  27  1.205 10 kg-m/s p 1.2045 10 27  1.32 10 3 m/s   m 9.11 1031

2.2 Sketch _______________________________________

or   1.32 10 cm/s h 6.625 10 34 (b) p    440  10 9 27  1.506  10 kg-m/s p 1.5057 10 27  1.65  10 3 m/s   m 9.11 10 31 5

2.3 Sketch _______________________________________ 2.4 From Problem 2.2, phase 

2 x



 t

or   1.65 10 cm/s (c) Yes _______________________________________ 5

= constant Then 2 dx    dx     0,    p      dt dt  2  2 x  t From Problem 2.3, phase 

2.7 (a) (i)

= constant

o

or   11.2 A



hc E  h     E









 1.87  10 kg-m/s 6.625 1034  3.54 10 10 m   1.8704 10 24





o





or   3.54 A



l



d ll h





t

19



lib b d



 5.915  10  24 kg-m/s 34 6.625  10  1.12  10 10 m   24 5.915  10 o



t



(iii) p  2 9.1110 31 120 1.6 10 19

Cesium: E  1.90 eV  1.90  1.6  10  J So,  6.625 10 34 3 10 10  6.54 10  5 cm  1.90 1.6  10 19 or   0.654  m _______________________________________





24

Gold: E  4.90 eV  4.90  1.6  10 19 J So, 6.625 10 34 3 10 10  2.54 10 5 cm  4.90  1.6  10 19 or   0. 254  m

D

 

(ii) p  2 9.1110 31 12 1.6 10 19

hc

l



 5.915 10 kg-m/s h 6.625  10  34  1.12 10  9 m   p 5.915  10  25

2.5

l



25

Then 2 dx    dx     0,    p      dt dt  2  _______________________________________

Thi



p  2 mE  2 9.11 10 31 1.2  1.6 10 19



l

or   1.12 A

d





Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ (b)



p  2 1.67 10

2.10

1.2 1.6 10 

27

19

(a) p 

 2.532  10 23 kg-m/s

6.625  10  34  2.62 10 11 m 23 2.532  10 



o

or   0.262 A _______________________________________

or

3  3 kT    0.0259  0.03885 eV 2  2

or

Now pavg  2mEavg

(b)







 2 9.11 10 31 0.03885 1.6 10 19



or

or

p avg  1.064  10  25 kg-m/s

6.625 1034

85 10 10  7.794 10 26 kg-m/s p 7.794 10  26  8.56 10 4 m/s   31 m 9.11 10   8.56 10 6 cm/s 1 1 2 E  m  2  9.11 10  31 8.56  10 4 2 2  3.33  10 21 J 3.334  10 21  2.08 10  2 eV E 1.6 1019 1 2 E  9.11 10 31 8 10 3 2  23  2.915 10 J 2.915  10 23 E  1.82 10 4 eV 1.6 10 19 p  m  9.11 10 31 8 10 3



6.625  1034

h  6.225 10 9 m  p 1.064 10 25







Now









2.8

E avg 

h





 7.288 10





 27

kg-m/s h 6.625 10  35  9.09  10  8 m   p 7.288 10  27

or o

  62 .25 A _______________________________________

o

or   909 A _______________________________________

2.9

E p  h p 

2.11

hc

p

(a) E  h 

Now

Ee 

p e2 2m

and p e 

h

e

 Ee 

1  h   2 m   e 

2

2

1  h 1  10h       p 2m   e  2m   p  which yields 100h p  2mc hc hc 2mc 2 E p E    2 mc   p 100h 100 hc







2

2 9.11 10 31 3 108 100  1.64  10 15 J  10.25 keV _______________________________________ 



 1.99  10

2

Set E p  E e and  p  10  e Then

hc

6.625 10 3 10  34



8

10 1 10

15

J

Now

E 1.99  10 15  e 1.6 10  19 V  1.24 10 4 V  12.4 kV E  e V  V 





31 1.99 10 15 (b) p  2 mE  2 9.11 10



 23

 6.02  10 kg-m/s Then  h 6.625 10 34  1.10  10 11 m    p 6.02  10 23 or o

  0.11 A _______________________________________

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 2.12

1.054 10 34  p   x 10  6  1.054  10 28 kg-m/s _______________________________________ 2.13 (a) (i) p x  

p 

1.054  10 34  8.783 10  26 kg-m/s 12  10 10

d  p2     p (ii)  E   p  dp  2 m  dp p p 2p   p  2m m dE

Now p  2mE



 

 2 9 10 31 16 1.6 10 19



24

 2.147  10 kg-m/s 24 26 2.1466 10  8.783 10  so E  31 9 10  19  2.095 10 J 2.095  10 19 or E   1.31 eV 19 1.6  10  (b) (i) p  8.783 10 26 kg-m/s







 

(ii) p  2 5 10 28 16 1.6 10 19





 5.06 10  23 kg-m/s 23 26 5.06 10  8.783 10  E  28 5  10   21  8.888  10 J 8.888  10  21 or E   5.55  10 2 eV 1.6  10 19 _______________________________________







2.14

p 

 1.054  10 34   1.054  10 32 kg-m/s x 10  2

p  m    

p 1.054  10 32  m 1500

   7  10 36 m/s _______________________________________

2.15 (a) Et    1.054  10 34 t   8.23 10 16 s 0.8 1.6 10  19



(b) p 



34

1.054 10   x 1.5 1010

 7.03  10  25 kg-m/s _______________________________________

2.16 (a) If 1  x, t  and 2  x, t are solutions to Schrodinger's wave equation, then

 x, t    2  2 1 x , t   V  x 1  x, t  j 1  2m t x 2 and  2  x, t   2  2 2 x ,t   V x 2 x, t   j  2 t 2m x Adding the two equations, we obtain  2  2   1  x, t  2  x, t 2 m x 2  V x 1 x , t   2 x , t   1  x, t   2 x, t  t which is Schrodinger's wave equation. So 1  x , t    2 x , t  is also a solution.  j

(b) If 1 x, t  2 x , t  were a solution to Schrodinger's wave equation, then we could write 2   2  1  2   V x 1  2  2m x 2   j  1  2  t which can be written as   2   2 1  2   22 2 1   1  2 2 2 x x  2m  x x  2 1   V x  1   2  j   1  2 t t   Dividing by 1  2 , we find

 2 2m

 1  2 2 1  2 1 2  1  2        2 2 1 2  x x  1 x   2 x  1 2 1  1   V x   j   1  t   2 t

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ Since 1 is a solution, then

2.19

 1  1 1 1  V x   j      2 1 t 2 m 1 x Subtracting these last two equations, we have 2   2  1  2 2 1  2      2 1 2 x x  2 m   2 x 1 2  j   2  t 2



2

0

 1 1  V x   j     t 2 2 m 2 x 2 Subtracting these last two equations, we obtain  2  2 2  V  x  0   1 2m  1 2 x x This equation is not necessarily valid, which means that 1 2 is, in general, not a solution to Schrodinger's wave equation. _______________________________________

2

ao

P

 2   x   dx exp    a o  ao 

4

 0

ao

2  ao

2

 2 2

*

Function has been normalized. (a) Now

Since 2 is also a solution, we have 2

    dx  1

Note that

2 ao



1

2

0

  2x  ao 4   ao    exp     2   ao  0

   2 ao P  1 exp    4a o which yields P  0.393 (b) ao

A

 x  cos 2  dx  1  2 



P

ao

 x sin x  1 A 2  2  1 2

2.18

 2   x   dx exp    a o   a o

4 ao

2  ao



or A  2 _______________________________________

ao

4

2 4

  1   P  1exp 1  exp    2   which yields P  0.239 (c) ao

P

 0

2

1  1   1 A2        1  A2   2 4  4 

  2x   dx o 

 exp a

or

1 / 2

 x sin 2 nx 1 / 2 1 A   4n   1 / 2 2

2

  2x  a o 2   ao    exp    ao  2   ao  ao

1 / 2

A 2 cos2 n x dx  1

   1  1   1  exp    2   

2 2

3

 3   1  A 2      1  2  2  1 so A 2  2 1 or A  2 _______________________________________

  2x  dx o 

 exp a

or

2.17 3

4



2

 2   x   dx exp    ao   a o

2 ao

ao

  2 x dx  o 

exp  a 0

  2x  ao   ao    exp     2   ao  0   1exp  2   1 which yields P  0.865 _______________________________________ 2  ao

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 2.21

2.20

a/ 4

2

P   x  dx



a/ 4

(a)

 0

(a) P 

a        sin    24   2       4    a 2      a     2   a 1 a        a   8 4  or P  0.409 a/ 2

(b) P 

2

  a  cos

   sin     2 sin    a a  2           a   4  4  8  4          a    a   1 1 1  2  0    8 4  4 or P  0.0908 a / 2

(c) P 

 2

  a  cos

a / 2

      a 2 sin          a   8  8       a   or P  0.25 a/ 2

(b) P 

2

 x   dx  a 

  2 x   a / 2 sin    a   2x     4    a2    a / 2   a   

             a a 2 sin sin            a   4  4   4   4          a    a   or P  1 _______________________________________

 2

 2x  dx a 

  a  sin 

a/ 4

2

  4 x   a / 2 sin    a   2 x      2    a2 4  a / 4   a   

 x    dx  a

  2x   a / 2 sin    a   2x        a2 4   a/ 4   a  

 2x  dx a 

  4 x   a / 4 sin    2x  a      2    a2 4   0   a   

2

a/ 4

2

0

2  2  x  dx   cos  a   2

  2x   a / 4 sin    2x  a         a2 4   0   a  

 2

  a  sin 

   2a     a4   or P  0.25 a / 2

(c) P 

 2

 sin 2   a  sin      8   8  8        a   a 

 2 x   dx a 

  a  sin 

a / 2

2

  4x   a / 2 sin    2 x  a       2    a2 4   a/ 2   a         2  a sin 2    a  sin  2           8    a  4  8   4         a   a  or P  1 _______________________________________ 2.22

or



8  10 4  10 m/s k 8  108  p  10 6 cm/s

(a) (i)  p 





12

2 2   7.854 10 9 m 8 k 8  10

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Problem Solutions ______________________________________________________________________________________

2 1   4.32  108 m  1.454 10 8   k  4.32 10 8 5 10 4 

o

  78.54 A

or



 

(ii) p  m  9.11  10 31 10 4 27

 9.11 10 kg-m/s 2 1 1 E  m 2  9.11 10  31 10 4 2 2  4.555 10  23 J 23 4.555  10  2.85 104 eV or E  19 1.6  10  1.5  1013 4 (b) (i)  p    10 m/s k  1.5  109 or  p  10 6 cm/s





 

2 2   4.19 10  9 m 9 k 1.5  10

 2.16 1013 rad/s



25

 9.11  10 kg-m/s 34 6.625  10  7.27  10 10 m  9.11 10 25 2 1 k  8.64 10 9 m 10  7.272 10   8.64 10 9 10 6  8.64 10 15 rad/s _______________________________________



En 

p   9.11  10 27 kg-m/s

E  2.85  10 4 eV _______________________________________

19



1

2

m



2





For electron traveling in x direction,

  9.37 10 6 cm/s p  m  9.11 10 31  9.37 10 4    8.537  10 26 kg-m/s  h 6.625 10 34  7.76  10 9 m   p 8.537 10  26

2 8 1  8.097 10 m  7.76 10 9   k   8.097 10 8 9.37 10 4 k

2









or   7.586 10 rad/s _______________________________________ 13

2.24 (a) p  m  9.11 10 31 5 10 4



 4.555 10





 26





kg-m/s

h 6.625 10 34  1.454  10 8 m  p 4.555 10 26



2









2

E n  n 2 1.0698  10 21 J

or





n 2 1.0698 1021 19 1.6  10 or E n  n 2 6.686 10 3 eV Then E1  6.69 10  3 eV



1

9.11 10 31  2 2 6 4 so   9.37 10 m/s  9.37 10 cm/s 



n 2 1.054  10 34  2  2 n 2 2  2ma 2 2 9.1110  31 75  10 10

En 

2.23 j kx  t (a) x ,t   Ae    



 

2.25

or   41.9 A

(b) E  0.025 1.6 10

 

(b) p  9.11 10 31 10 6

o

(ii)

2

k



E 2  2.67  10 2 eV E 3  6.02  10 2 eV _______________________________________

2.26 (a) E n 











2

 6.018 10   n 0.3761 eV

 n 2 6.018  10 20 J

En 

or



n2 1.054  10 34  2  2 n 2 2  2 31 10 2ma 2 9.1110 10  10 n

2

20

2

1.6 10 

19

Then E1  0.376 eV E 2  1.504 eV E 3  3.385 eV

hc E E  3.385 1.504  1.6 10 19

(b)  



 3.01  10

19

J





2

Semiconductor Physics and Devices: Basic Principles, 4th edition Chapter 2 By D. A. Neamen Problem Solutions ______________________________________________________________________________________

6.625 10 310  34



8

19

3.01 10  6.604 10 7 m   660 .4 nm or _______________________________________ 2.27 (a) E n 

 2 n 2 2 2ma 2

3 15 10 

15 10 3





2

 n 2 1.054 10 34 



2

1.2 10   n 2.538 10  2 15 10

2 2

3

62

2

or n  7.688 10 29 (b) E n 1  15 mJ (c) No _______________________________________ 2.28 For a neutron and n  1 :

where

 



34 2

1.054  10     E1  2 ma 2 2 1.66 10  27 10 14 2

2



2



2

 3.3025  10 13 J

or

E1 

3.3025 10 13

 2.06 10 6 eV 1.6 10  19 For an electron in the same potential well:

1.054 10   2 9.11 10 10   34 2

E1 

31

2

14 2

 6.0177  10 10 J

or

E1 

so in this region  2  x 2mE  2   x  0  x 2 The solution is of the form   x  A cos kx  B sin kx where 2 mE k 2 Boundary conditions: a a  x   0 at x  ,x 2 2 First mode solution:  1 x   A1 cos k 1 x where   2 2 k1   E1  a 2ma 2 Second mode solution:  2  x  B 2 sin k 2 x

6.0177 1010

3.76 10 9 eV 1.6 10 19 _______________________________________ 2.29 Schrodinger's time-independent wave equation  2  x 2m  2  E  V x  x  0 x 2  We know that a a  x   0 for x  and x  2 2 We have a a V x   0 for  x 2 2

2 4 2  2  E2  a 2 ma 2 Third mode solution:  3  x  A3 cos k 3 x where 2 2 3 9...


Similar Free PDFs