[솔루션] 반도체공학 1판( 저자 Neamen 1st - Introduction to Semiconductor Devices) PDF

Title [솔루션] 반도체공학 1판( 저자 Neamen 1st - Introduction to Semiconductor Devices)
Course 반도체공학1
Institution 아주대학교
Pages 180
File Size 4.1 MB
File Type PDF
Total Downloads 432
Total Views 576

Summary

Solutions Manual Exercise Solutions Chapter 1Exercise ProblemsEX1. For a body-centered cubic, 2 atoms per unit cell. ThenVolume Density == 22 −a 3 o b475 10. x 8 g 3Or Volume Density = 187 10./ xa 22 tomscm 3####### ____EX1.For a (132) →→FH 111 IK HF 6 KI66 26 pqs 3,, ,,So that pq s ===623,,####### ...


Description

An Introduction to Semiconductor Devices Chapter 1 Solutions Manual Exercise Solutions ______________________________________________________________________________________

Chapter 1 Exercise Problems

(b) Also (113) plane ⇒

FH

EX1.1 For a body-centered cubic, 2 atoms per unit cell. Then 2

Volume Density =

3

=

ao

b

2

4 .75 x10

−8

Intercepts of plane are p = 3 , q = 3 , s = 1 _______________________________________

g

3

Or 22

Volume Density = 187 . x10 atoms / cm

Test Your Understanding Exercises

3

____________________________________ EX1.2 For a (132) →

F H

1

I F K H

1 1 , → p q s ,

IK

1 1 1 → ( 3, 3, 1) , , 1 1 3

6 6 6 , , 6 2 3

TYU1.1 Body-centered cubic = 2 atoms per unit cell. 2 Density = 3 ao

IK

So that p = 6, q = 2, s = 3

____________________________________

Then a o = 3.42 A Now

EX1.3 (a) For a body-centered cubic, (100) plane, effectively 1 atom per plane. Then Surface Density =

1 atom 2

=

ao

b

1

4.75 x10

−8

g

14

=

(a ) o

c h b ao

2

=

−8

4. 75x 10

g

2

(3.42 ) 3 4

r = 1.48 A

°

2

____________________________________ TYU1.2

d=

2

ao 2

(4.83) 2 4

°

⇒ d = 3.42 A

TYU1.3

2

Surface Density = 6.27 x 10 atoms / cm

=

____________________________________

Or 14

5 x10

or

2

2

−23

= 4 x10

22

°

4 r = ao 3 ⇒ r =

Or Surface Density = 4 .43 x10 atoms / cm (b) (110) plane, effectively 2 atoms per plane. Then Surface Density 2 atoms

2

3

⇒ ao =

Density =

2

8 3

ao

____________________________________

=

8

b5.43x10 g −8

3

Or Density = 5x 10 22 cm −3

EX1.4 (a) For p = 1 , q = 1 , s = 3 ; then [113] direction

____________________________________

1

An Introduction to Semiconductor Devices Chapter 1 Solutions Manual Problem Solutions ______________________________________________________________________________________

Chapter 1 Problem Solutions

(b) Face-centered cubic lattice d d = 4r = a 2 ⇒ a = =2 2 r 2

1.1 (a) fcc: 8 corner atoms × 1/8 = 1 atom 6 face atoms × ½ = 3 atoms Total of 4 atoms per unit cell

h = 16 2 r F 4 πr IJ 4 atoms per cell, so atom vol. = 4G H 3K Then

Ratio =

−8

g

3



Density of Ga = 2.22 x10

22

Unit cell vol. = a cm

F 4 rI = H3K

3

FG 4πr IJ H3K 3

Then

Density of As = 2.22 x10 cm _______________________________________

FG 4π r IJ H 3 K × 100% ⇒ Ratio = F 4r I H 3K 3

2

1.3

3

8 Ge atoms per unit cell 8 Density = ⇒ 8 3 5.65x10−

g

22

3

2 atoms per cell, so atom vol. = 2

−3

22

Ratio = 74%

−3

4 As atoms per unit cell, so that

b

3

16 2 r (c) Body-centered cubic lattice 4 d = 4r = a 3 ⇒ a = r 3

4 Ga atoms per unit cell 5.65 x10

FG 4πr IJ H 3 K ×100% ⇒

4

1.2

b

Ratio = 68%

(d) Diamond lattice −3

Density of Ge = 4.44 x10 cm _______________________________________

Body diagonal = d = 8r = a 3 ⇒ a =

1.4 (a) Simple cubic lattice; a = 2 r

Unit cell vol. = a 3 =

F 8r I H 3K

FG 4πr IJ H3K 3

FG 4 πr IJ H3K 3

Then

FG 4πr IJ H 3 K × 100% ⇒ Ratio = 34% Ratio = F 8r I H 3K 3

Then

8

3

3

r

3

8 atoms per cell, so atom vol. 8

1 atom per cell, so atom vol. = (1)

8r

8 3

3

Unit cell vol = a3 = (2 r) = 8 r3

FG 4 πr IJ H 3 K × 100% ⇒ Ratio =

3

3

(c) Diamond: 8 corner atoms × 1/8 = 1 atom 6 face atoms × ½ = 3 atoms 4 enclosed atoms = 4 atoms Total of 8 atoms per unit cell _______________________________________

4

3

3

(b) bcc: 8 corner atoms × 1/8 = 1 atom 1 enclosed atom = 1 atom Total of 2 atoms per unit cell

Density =

c

3

Unit cell vol = a = 2 2 r

3

Ratio = 52.4%

_______________________________________

2

An Introduction to Semiconductor Devices Chapter 1 Solutions Manual Problem Solutions ______________________________________________________________________________________

B-type: 1 atom per unit cell, so . x10 23 cm −3 Density (b) = 118 _______________________________________

1.5 We have 8r = a o 3 so that

r=

5.65 3 8

= 1.223 A

1.9

°

Simple cubic; a o = 2 r = 4.2 A

Then °

d = 2 r = 2.45 A _______________________________________

bcc: 4r = a o

1.6 From Problem 1.4, percent volume of fcc atoms is 74%. Therefore after coffee is ground,

fcc: 4 r = ao 2 ⇒ ao =

3

8

From 1.3d, a =

(5.43) 3

°

= 5.94 A

2 8(2.1) 3 °

1.10 (b) ° . + 1.0 ⇒ a = 2.8 A a = 18

r °

. A = 118 8 8 Center of one silicon atom to center of nearest ° neighbor = 2r ⇒ 2.36 A

(c)

(b) Number density 8 22 −3 = ⇒ Density = 5x10 cm 3 −8 5.43x10

Cl: Density (same as Na) = 2.28 x10 cm

so that r =

b

=

Na: Density =

= ρ=

N ( At. Wt.)

b5 x10 g(28.09) ⇒ 23

NA

6. 02 x 10

ρ = 2.33 grams / cm 3 _______________________________________

ρ=

1.8 °

(a) a = 2r A = 2( 1.02) = 2.04 A Now

−3

−3

4.85x 10

− 23

b 2.8x10 g −8

3



_______________________________________ 1.11

so that rB = 0.747 A ° (b) A-type; 1 atom per unit cell 1 Density = ⇒ 8 3 2.04 x10 −

. )= 8 A (a) a 3 = 2 (2.2 ) + 2 (18 so that ° a = 4.62 A

g

23

3

ρ = 2.21 gm / cm3

2rA + 2rB = a 3 ⇒ 2rB = 2.04 3 − 2.04

b

22

= 2.28 x10 cm

b2.8 x10 g −8

(d) Na: At.Wt. = 22.99 Cl: At. Wt. = 35.45 So, mass per unit cell 1 1 (22.99 )+ (35. 45) − 23 2 = 4.85 x10 = 2 6.02 x10 23 Then mass density is

22

=

12

22

g

(c) Mass density

°

a o = 9.70 A _______________________________________

3

a 3

3 4( 2.1)

= 4.85 A

or

1.7 °

4(2.1)

diamond: 8r = a o 3 ⇒ a o =

Volume = 0.74 cm _______________________________________

(a) a = 5.43 A

3 ⇒ ao =

°

−3

. x10 cm Density(A) = 118

Density of A =

1

b4.62 x10 g −8

3

3

°

⇒ 1.01x1022 cm −3

An Introduction to Semiconductor Devices Chapter 1 Solutions Manual Problem Solutions ______________________________________________________________________________________

Density of B =

1

b4.62 x10 g

22

⇒ 1.01x10 cm

−8

1.15 (a) Planes intercept at: (i) p = 1, q = ∞ , s = ∞ (ii) p = 3, q = 1, s = ∞ (iii) p = 3, q = ∞ , s = 2

−3

(b) Same as (a) (c) Same material _______________________________________ 1.12 (a) Surface density 1 1 = 2 = 8 a 2 4.62 x10 −

b

3 .31 x10

14

g

(b) Vector components: (i) p = 1, q = 1, s = 0 (ii) p = 3, q = 1, s = 1 (iii) p = 1, q = 2 , s = 3 _______________________________________



2

2

−2

cm

1.16 (a)

Same for A atoms and B atoms (b) Same as (a) (c) Same material _______________________________________

(b)

1.13

1

(a) Vol density =

a3o

F 1 , 1 , 1I ⇒ (313) H 1 3 1K F 1 , 1 , 1I ⇒(121) H 4 2 4K

_______________________________________ 1

Surface density =

2

ao

1.17

2

°

(a) d = ao = 5.25 A

(b) Same as (a) _______________________________________

(b) d =

ao

No . atoms

2

b5. 43x10 g −8

2

(110) plane: Density =

b5. 43x 10 g

2

(111) plane: Density =

1.18 ° (a) d = a o = 5.20 A

No . atoms 2

2

(b) d = 14

= 9.59 x10 cm No . atoms 2

ao

=

3

(5.20) 2 2

= 3.68 A°

(5.20 ) 3

= 3. 00 A ° 3 3 _______________________________________

c 3 2h

14

2

2

(c) d =

a1 6f ⋅ 3 + a1 2f ⋅ 3 = 7.83x10 b5. 43x 10 g c 3 2h −8

ao 2

−2

2

ao

=

°

−2

14

4

−8

d=

= 6. 78 x10 cm

ao

=

ao 3

= 3.03 A 3 _______________________________________ (c)

2

ao =

°

= 3.71 A

2

1.14

(100) plane: Density =

2

=

1.19 cm

−2

ao =

4r

=

4(2.25 )

3 3 (a) Density = 2 2 = 3 ao 5.196 x10− 8

(a) (110) = highest density (b) (100) = lowest density _______________________________________

b

4

g

. A = 5196

3

°

= 1.43 x10 22 cm −3

An Introduction to Semiconductor Devices Chapter 1 Solutions Manual Problem Solutions ______________________________________________________________________________________

(b) d =

ao

2

=

5196 2 .

2 2 (d) Surface density 2 2 = 2 = −8 ao 2 . x10 5196

b

1.23

= 3.67 A

FH θ IK = a 4 = 2 ca 3 h 4

°

We find

o

g

1 3

so that

θ

2

2

2

or 14

o

cos

= 54.74°

or

−2

= 5.24 x 10 cm _______________________________________

θ = 109.5° _______________________________________

1.20

1.24

22 −3 Density of silicon atoms = 5x10 cm and 4 valence electrons per atom, so 23

(a) Ratio =

−3

Density of valence electrons = 2 x10 cm _______________________________________

(b) Ratio =

5x10 22 2 x1015 22

−5

⇒ 8x 10 % −6

⇒ 4 x10 %

5x10 _______________________________________

1.21 Density of GaAs atoms 8 atoms 22 −3 = = 4.44 x10 cm 8 3 5.65x10 −

b

4 x10 16

1.25

b5 x10 g(30 .98 ) ⇒ (a) Fraction by weight ≈ b5 x10 g(28.06 )

g

16

22

An average of 4 valence electrons per atom, −3 23 Density of valence electrons = 1.77 x 10 cm _______________________________________

. x10 −4 % 110

(b) Fraction by weight

b10 g(10.82 ) b 5x10 g( 30.98) +b 5 x10 g( 28.06) ⇒ 18



1.22 Silver: Group 1 = 1 valence electron per atom 3 At.Wt. = 107.88, Mass density = 10.50 gm / cm Mass per unit cell, 107.88 −22 = = 1.79x 10 6. 02 x 1023 Now − 22

ρ=

1. 79x 10 a 3o

FG 1.79x10 JI H 10.50 K − 22

⇒ ao =

16

22

−4

7.71 x10 % _______________________________________

1.26 1

Volume density =

d

1 /3

3

15 −3 = 2x 10 cm

So −6

d = 7.94 x10 cm = 794 A

or

°

°

We have aO = 5.43 A So

°

ao = 2.57 A Then, density of valence electrons 1 = −8 2.57 x10 or

b

22

d 794 d = ⇒ = 146 ao 5.43 ao

g

3

_______________________________________

−3

Density = 5.89x 10 cm _______________________________________

5

An Introduction to Semiconductor Devices Chapter 2 Solutions Manual Exercise Solutions ______________________________________________________________________________________

Chapter 2 Exercise Problems EX2.1 (a)

E =

hc

λ

Then

b 6.625x10 gb 3x10 g b10 gx10 − 34

=

10

p

−19

1.99 x10

LM 1 − 1 PO a 4π ∈ f ⋅ 2( =) N( n + 1) n Q −b 9.11x10 gb 1.6x 10 g = 4 π b8 .85 x10 g (2 )b1.054 x10 g L 1 − 1 OP ×M (n + 1) n Q N We want L 1 − 1 PO ≤ 0.20 E − E = −13.58 M N(n + 1) n Q

− 19

− 19

1.6x 10

= 1.24 eV

− 34

− 16

J Then

= 1.24 x 10 3 eV 1.6x 10−19 ____________________________________

2

FH pIK m

1

2

=

m

2

b 3. 68x 10 g E= 2b 5x10 g − 26

− 31

p

n +1

− 19

(n + 1)

2

2



1 n2

− 0 .0147

n=5 ____________________________________

2m

2

EX2.4 = 1.35 x10 −21 J

b gb1.6x10 g = 1.6x10

ΔE = 10

−8

− 19

− 27

J

so mv 1Δv = 1.6 x10 −27 −3

= 8.46x 10 eV

E = 20 meV = 3.2 x10 2 mE =

2

We find

2

or Δv =

p=

2

2

(b) and

4

− 34

n

1

− 21

1.6 x10

2

or

and 1. 35x10

−19

2

EX2.2 (a) 6. 625x 10 −34 h p= = = 3.68 x10 −26 kg − m / s 180x 10−10 λ Now 2

2

2

2

− 12

1.99 x10 −16

mv =

2

−31

10

−8

1

4

o

b6.625x10 gb3x10 g = 1. 99x 10 E= b10 x10 g E=

− mo e

En +1 − En =

(b)

E=

= 8.68 x10 −9 m

EX2.3

E=

so

7.636 x10

− 26

____________________________________

J

Then

E=

6. 625x 10

λ = 86.8 A°

or E = 1.99 x10

=

or

−8

4

− 34

h

λ=

b

−21

2 9.11x10

J −31

b

1. 6 x10−27

9.11x 10−31

gb

2 x 105

g

−3

= 8. 78 x10 m / s or

= 0.878 cm / s ____________________________________ Δv

gb3.2 x10 g −21

or 26

p = 7.636 x10 − kg − m / s

6

An Introduction to Semiconductor Devices Chapter 2 Solutions Manual Exercise Solutions ______________________________________________________________________________________ EX2.8 From Example 2.8, we can write

EX2.5 From Example 2.5 N=

4π ( 2 m)

=

h

3/ 2



3

b

2 3

⋅E

4π 2 9.11x10

b6.625x10 × b 3.2 x 10

−31

− 34

−19

F 1 I = 4.6kT H 0.01K

3 / 2 2 eV 1 eV

g F2I g H3K g − b1.6x10 g

E − E F = kT ln

3 /2

3 /2

−19

____________________________________ 3 /2

Test Your Understanding Exercises

or

TYU2.1

N = 8 .29 x10 27 m −3 = 8 .29 x10 21 cm−3 ____________________________________

EX2.6

(a)

(a)

L− a E − E f O MN kT PQ L −( 0. 3+ 0. 0259)O = exp NM 0.0259 QP F

f F = exp

f F = 3. 43x10

f F = exp

L MN

−7

1 − f F = 4.98 x10

(b)

LM −( 0.35 + 2 (0.0259 ))OP N 0.0259 Q

1 − f F = exp

−6

−( 0.3 + 2( 0.0259)) 0.0259

or

PQO

−7

1 − f F = 183 . x10 ____________________________________

or

TYU2.2

−6

f F = 1.26 x10 ____________________________________

fF = 1 + exp

EX2.7 f F = 0.005 = exp

or

LM −0.20 O N 0.0259 PQ

= ln (200 )

or kT =

0. 20

ln( 200) We can write

= 0.03775 eV

0.03775 = (0.0259 )

kT

KI

=

1 1 + exp( 4)

f F = 0.018 = 18% . ____________________________________

F +0.20I = 1 = 200 H kT K 0.005

kT

F H

1 E − EF

or

exp

Then +0.20

F

or

or (b)

LM −aE − E f PO N kT Q LM −(0.35 + 0.0259 ) OP = exp N 0.0259 Q

1 − f F ≅ exp

FTI H300 K

which yields T = 437 K ____________________________________

7

An Introduction to Semiconductor Devices Chapter 2 Solutions Manual Problem Solutions ______________________________________________________________________________________

Chapter 2 Problem Solutions

λ=

h

− 34

=

p

2.1 E = hν =

hc

λ

2.31x10



Similar Free PDFs