Multidimensional Chromatography PDF

Title Multidimensional Chromatography
Author Thabo Mog
Pages 444
File Size 4.4 MB
File Type PDF
Total Downloads 9
Total Views 60

Summary

Multidimensional Chromatography Edited by Luigi Mondello, Alastair C. Lewis and Keith D. Bartle Copyright © 2002 John Wiley & Sons Ltd ISBNs: 0-471-98869-3 (Hardback); 0-470-84577-5 (Electronic) Multidimensional Chromatography Multidimensional Chromatography LUIGI MONDELLO Dipartimento Farmaco-...


Description

Multidimensional Chromatography Edited by Luigi Mondello, Alastair C. Lewis and Keith D. Bartle Copyright © 2002 John Wiley & Sons Ltd ISBNs: 0-471-98869-3 (Hardback); 0-470-84577-5 (Electronic)

Multidimensional Chromatography

Multidimensional Chromatography LUIGI MONDELLO Dipartimento Farmaco-chimico, Università degli Studi di Messina, Italy ALASTAIR C. LEWIS School of Chemistry and School of the Environment, University of Leeds, UK KEITH D. BARTLE School of Chemistry, University of Leeds, UK

JOHN WILEY & SONS, LTD

Copyright © 2002 by John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex PO19 1UD, England National 01243 779777 International (+44) 1243 779777 e-mail (for orders and customer service enquiries): [email protected] Visit our Home Page on http://www.wiley.co.uk All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act, 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, UK W1P 0LP, without the permission in writing of the Publisher. Other Wiley Editorial Offices John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA WILEY-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany John Wiley & Sons Australia, Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons (Canada) Ltd, 22 Worcester Road, Rexdale, Ontario M9W 1L1, Canada

Library of Congress Cataloging-in-Publication Data Mondello Luigi. Multidimensional chromatography / Luigi Mondello, Alastair C. Lewis, Keith D. Bartle. p. cm Includes bibliographical references and index. ISBN 0-471-98869-3 1. Chromatographic analysis. I. Lewis, Alastair C. II. Bartle, Keith D. III. Title. QD79.C4 M65 2001 543.089—dc21 2001046684 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0 471 98869 3

Typeset in 10/12pt Times by Thomson Press (India) Limited, New Delhi Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn. This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which at least two trees are planted for each one used for paper production.

CONTENTS List of Contributors Preface PART 1: GENERAL 1

Introduction K.D. Bartle 1.1 Preamble 1.2 Packed Capillary Column and Unified Chromatography 1.3 Resolving Power of Chromatographic Systems 1.4 Two-Dimensional Separations 1.5 The Origins of Multidimensional Chromatography Acknowledgements References

2 Coupled High Performance Liquid Chromatography with High Resolution Gas Chromatography L. Mondello 2.1 Introduction 2.2 Transfer Techniques 2.3 Vaporization with Hot Injectors 2.4 Transfer of Water-Containing Solvent Mixtures 2.5 Indirect Introduction of Water 2.6 Conclusions References 3

4

Multidimensional High Resolution Gas Chromatography A. C. Lewis 3.1 Introduction 3.2 Practical Two-Dimensional Gas Chromatography 3.3 Practical Examples of Two-Dimensional Chromatography 3.4 Conclusions References Orthogonal GC – GC P. J. Marriott 4.1 Introduction to Multidimensional Gas Chromatography 4.2 Introduction to GC  GC Separation

xi xiii 1 3 3 4 6 9 12 13 13 17 17 18 25 28 31 38 42 47 47 48 57 72 72 77 77 80

vi

5

Contents

4.3 Introduction to Modulation Technology 4.4 Orthogonality of Analysis 4.5 Quantitative Aspects 4.6 Future Opportunities and Challenges of GC  GC Technology Acknowledgements References

82 94 101 104 106 106

Coupled-Column Liquid Chromatography Claudio Corradini 5.1 Introduction 5.2 Theoretical Aspects 5.3 LC – LC Techniques 5.4 Conclusions References

109

6 Supercritical Fluid Techniques Coupled with Chromatographic Techniques F. M. Lanças 6.1 Introduction 6.2 On-Line Coupling of SFE with Chromatographic Techniques 6.3 SFE – GC 6.4 SPE – SFE – GC 6.5 SFE – SFC 6.6 SFE – LC 6.7 On-Line Coupling of Supercritical Fluid Extraction with Capillary Electrodriven Separation Techniques (SFE – CESTs) 6.8 From Multidimensional to Unified Chromatography Passing through Supercritical Fluids References 7 Unified Chromatography: Concepts and Considerations for Multidimensional Chromatography T.L. Chester 7.1 Introduction 7.2 The Phase Diagram View of Chromatography 7.3 Instrumentation 7.4 Advantages of and Challenges for Unified Chromatography Techniques in Multidimensional Systems 7.5 Column Efficiency and Plate Heights in Unified Chromatography References 8

Multidimensional Planar Chromatography Sz. Nyiredy 8.1 Introduction 8.2 Two-Dimensional or Multidimensional Planar Chromatography?

109 111 116 129 130 135 135 138 138 139 141 141 143 147 147 151 151 153 159 162 164 167 171 171 172

Contents

8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12

9

vii

Two-Dimensional Development on Single Layers Methods for the Selection of Appropriate Mobile Phases Two-Dimensional Development on Bilayers Multiple Development in One, Two or Three Dimensions Multiple Development in One Direction Multiple Development in Two Dimensions Multiple Development in Three Dimensions Coupled Layers with Stationary Phases of Decreasing Polarity Grafted Planar Chromatography Serially Connected Multilayer Forced-Flow Planar Chromatography 8.13 Combination of Multidimensional Planar Chromatographic Methods 8.14 Coupling of Planar Chromatography with other Chromatographic Techniques 8.15 Further Considerations References

173 175 176 177 178 182 184 186 186

Multidimensional Electrodriven Separations Martha M. Degen and Vincent T. Remcho 9.1 Introduction 9.2 Electrophoretic Separations 9.3 Comprehensive Separations 9.4 Planar Two-Dimensional Separations 9.5 Chromatography and Electrophoresis Combined in Non-Comprehensive Manners 9.6 Comprehensive Two-Dimensional Separations with an Electrodriven Component 9.7 Microcolumn Reverse Phase High Performance Liquid Chromatography – Capillary Zone Electrophoresis 9.8 Microcolumn Size Exclusion Chromatography – Capillary Zone Electrophoresis 9.9 Packed Capillary Reverse Phase High Performance Liquid Chromatography – Capillary Zone Electrophoresis 9.10 Packed Capillary Reverse Phase High Performance Liquid Chromatography – Fast Capillary Zone Electrophoresis 9.11 Three-Dimensional Size Exclusion Chromatography – Reverse Phase Liquid Chromatography – Capillary Zone Electrophoresis 9.12 Transparent Flow Grating Interface with Packed Capillary High Performance Liquid Chromatography – Capillary Zone Electrophoresis 9.13 Online Reverse Phase High Performance Liquid Chromatography – Capillary Zone Electrophoresis – Mass Spectrometry

197

188 191 193 193 194

197 197 199 200 201 203 204 206 207 208

209

210

211

viii

Contents

9.14 The Future of Multidimensional Electrokinetic Separations 9.15 Conclusions References

PART 2: APPLICATIONS 10 Multidimensional Chromatography: Foods, Flavours and Fragrances Applications G. Dugo, P. Dugo and L. Mondello 10.1 Introduction 10.2 Multidimensional Gas Chromatography (GC–GC or MDGC) 10.3 Multidimensional High Performance Liquid Chromatography 10.4 Multidimensional Chromatography using On-Line Coupled High Performance Liquid Chromatography and Capillary (High Resolution) Gas Chromatography (HPLC–HRGC) 10.5 Multidimensional Chromatographic Methods which Involve the Use of Supercritical Fluids 10.6 Multidimensional Planar Chromatography References

212 213 213

215 217 217 218 231

235 241 242 245

11 Multidimensional Chromatography: Biomedical and Pharmaceutical Applications G. W. Somsen and G. J. de Jong 11.1 Introduction 11.2 Liquid Chromatography – Liquid Chromatography 11.3 Solid-Phase Extraction – Liquid Chromatography 11.4 Liquid Chromatography – Gas Chromatography 11.5 Solid-Phase Extraction – Gas Chromatography 11.6 Solid-Phase Microextractions Coupled with Gas or Liquid Chromatography 11.7 Supercritical Fluid Extraction Coupled with Supercritical Fluid Chromatography 11.8 Coupled Systems Involving Capillary Electrophoresis 11.9 Conclusions References

284 285 290 291

12

303

Industrial and Polymer Applications Y. V. Kazakevich and R. LoBrutto 12.1 Introduction 12.2 General 12.3 LC–GC

251 251 252 265 273 278 280

303 304 304

ix

Contents

12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 13

14

LC–GC Applications SEC–GC Applications SEC–Reversed Phase LC Applications GC–GC Applications SFC–GC and Normal Phase-LC – SFC Applications Normal Phase-LC – SFC Applications SFC – GC Applications SFC – SFC Applications Conclusions References

305 306 315 317 324 324 325 328 330 331

Multidimensional Chromatography in Environmental Analysis R. M. Marcé 13.1 Introduction 13.2 Multidimensional Gas Chromatography 13.3 Multidimensional Liquid Chromatography 13.4 Liquid Chromatography – Gas Chromatography 13.5 Conclusions and Trends Acknowledgements References

335

Multidimensional Chromatographic Applications in the Oil Industry J. Beens 14.1 Introduction 14.2 Gases 14.3 Gasolines and Naphthas 14.4 Middle Distillates 14.5 Residue-Containing Products Acknowledgements References

335 336 341 358 370 370 370 379 379 381 387 392 401 403 403

15 Multidimensional Chromatography: Forensic and Toxicological Applications 15.1 Introduction 15.2 Liquid Chromatography–Gas Chromatography 15.3 Liquid Chromatography –Liquid Chromatography 15.4 Gas Chromatography–Gas Chromatography 15.5 On-Line Sample Preparation 15.6 Conclusions Acknowledgements References

407 407 408 410 414 427 429 429 429

Index

433

Multidimensional Chromatography Edited by Luigi Mondello, Alastair C. Lewis and Keith D. Bartle Copyright © 2002 John Wiley & Sons Ltd ISBNs: 0-471-98869-3 (Hardback); 0-470-84577-5 (Electronic)

CONTRIBUTORS Bartle, Keith D. School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK Beens, Jan Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Sciences, Free University de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands Chester, Thomas L. The Procter & Gamble Company, Miami Valley Laboratories, PO Box 538707, Cincinnati, OH, 45253-8707, USA Corradini, Claudio Consiglio Nazionale delle Ricerche, Instituto di Cromatografia, Area della Ricerca di Roma, Via Salaria Km. 29 300, 00016-Monterotondo Scalo, Roma, Italy Degen, Martha M. Department of Chemistry, Oregon State University, Gilbert Hall 153, Corvallis, OR, 97331-4003, USA de Jong, G. J. Department of Analytical Chemistry and Toxicology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands Dugo, Giovanni Dipartimento Farmaco-chimico, Facoltà di Framacia, Università degli Studi di Messina, Viale Annunziata, 98168-Messina, Italy Dugo, Paola Dipartimento di Chimica Organica e Biologica, Facoltà di Scienze, Università degli Studi di Messina, Salita Sperone, 98165-Messina, Italy Kazakevich, Yuri V. Department of Chemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA

Contributors

xii

Lanças, Fernando M. Laboratory of Chromatography, Institute of Chemistry, University of São Carlos, Av. Dr Carlos Botelho 1465, 13560-970 São Carlos (SP), Brasil Lewis, Alastair C. School of Chemistry and School of the Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK LoBrutto, Rosario Department of Chemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA Marcé, R. M. Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Imperial Tarraco 1, 43005-Tarragona, Spain Marriott, Philip J. Chromatography and Molecular Separation Group, Department of Applied Chemistry, Royal Melbourne Institute of Technology, GPO Box 2467V, Melbourne 3001, Victoria, Australia Mondello, Luigi Dipartimento Farmaco-chimico, Facoltà di Farmacia, Università degli Studi di Messina, Viale Annunziata, 98168-Messina, Italy Nyiredy, Sz. Research Institute for Medical Plants, H-2011 Budakalàsz, PO Box 11, Hungary Remcho, Vincent T. Department of Chemistry, Oregon State University, Gilbert Hall 153, Corvallis, OR, 97331-4003, USA Snow, Nicholas H. Department of Chemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA Somsen, G. W. Department of Analytical Chemistry and Toxicology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands

PREFACE Separation Science is a mature and unified subject in which now conventional chromatographic and electrically driven processes are applied in the analysis of mixtures of compounds ranging from permanent gases to proteins. The boundaries between previously distinct techniques are increasingly blurred and it is becoming very evident that is a single theory may be applicable to chromatography whatever the physical state of the mobile phase. Gas, liquid and supercritical fluid chromatography can be regarded as special cases of the same procedure, while capillary electrochromatography combines liquid chromatography with electrophoresis. Separation science is now very focused on reducing not only timescales for analyzis, but also the size and physical nature of the analytical device, Miniaturisation of entire analytical procedures provides a strong driving force for these trends in unifying theory and practice, and is a process likely to continue, as separations using microfluidic devices are developed. In spite of these many advances however, the complexity of many naturally occurring mixtures exceeds the capacity of any single method, even when optimized to resolve them. For many years therefore, intense effort has been concentrated on coupling separations methods together to increase resolution, and these have proceeded parallel with advances in coupling separation methods with spectroscopy. As our ability to isolate components in mixtures has increased, so has our appreciation for the shear complexity of compounds found in nature, Even separation systems with the capacity to isolate many thousands of species, are found to be inadequate when applied to commonplace mixtures such as diesel fuel. We clearly have some way to go in realising separation systems that can provide truly universal and complete separations. Recent advances in multidimensional separation methods have been rapid and we considered that the time was appropriate to bring together accounts by leading researchers who are developing and applying multidimensional techniques. These authors have emphasized underlying theory along with instrumentation and practicalities, and have illustrated techniques with real-world examples. We hope that the eader will be as excited as we are by this combined account of progress. We thank all our contributors for their significant efforts in producing chapters of high scientific quality. We are especially indebted to Katya Vines of John Wiley who guided the project through its early stages and more recently to Emma Dowdle who brought it to completion. KEITH BARTLE, Leeds ALLY LEWIS, Leeds LUIGI MONDELLO, Messina

Multidimensional Chromatography Edited by Luigi Mondello, Alastair C. Lewis and Keith D. Bartle Copyright © 2002 John Wiley & Sons Ltd ISBNs: 0-471-98869-3 (Hardback); 0-470-84577-5 (Electronic)

Part 1 General

Multidimensional Chromatography Edited by Luigi Mondello, Alastair C. Lewis and Keith D. Bartle Copyright © 2002 John Wiley & Sons Ltd ISBNs: 0-471-98869-3 (Hardback); 0-470-84577-5 (Electronic)

1 Introduction K.D. BARTLE University of Leeds, Leeds, UK

1.1

PREAMBLE

The natural world is one of complex mixtures: petroleum may contain 105–106 components, while it has been estimated that there are at least 150 000 different proteins in the human body. The separation methods necessary to cope with complexity of this kind are based on chromatography and electrophoresis, and it could be said that separation has been the science of the 20th century (1, 2). Indeed, separation science spans the century almost exactly. In the early 1900s, organic and natural product chemistry was dominated by synthesis and by structure determination by degradation, chemical reactions and elemental analysis; distillation, liquid extraction, and especially crystallization were the separation methods available to organic chemists. Indeed, great emphasis was placed on the presentation of compounds in crystalline form; for many years, early chromatographic procedures for the separation of natural substances were criticized because the products were not crystalline. None the less, the invention by Tswett (3) of chromatographic separation by continuous adsorption/desorption on open columns as applied to plant extracts was taken up by a number of natural product researchers in the 1930s, notably by Karrer (4) and by Swab and Jockers (5). An early example (6) of hyphenation was the use of fluorescence spectroscopy to identify benzo[a]pyrene separated from shale oil by adsorption chromatography on alumina. The great leap forward for chromatography was the seminal work of Martin and Synge (7) who in 1941 replaced countercurrent liquid – liquid extraction by partition chromatography for the analysis of amino acids from wool. Martin also realized that the mobile phase could be a gas rather than a liquid, and with James first developed (8) gas chromatography (GC) in 1951, following the gas-phase adsorption – chromatographic separations of Phillips (9). Early partition chromatography was carried out on packed columns, but in 1958 Golay, in a piece of brilliant inductive reasoning (10), showed how a tortuous path through a packed bed could be replaced by a much straighter path through a narrow open tube. Long, and hence highly efficient columns for GC, could thus be fabricated from metal or glass capillaries, and remarkable separations were soon

4

Multidimensional Chromatography

demonstrated. None the less, practical difficulties associated with capillary column technology generally restricted open tubular GC to a minority of applications until the fused silica column revolution in 1979. Dandeneau and Zerenner realized (11) that manufacturing methods for fibre-optic cables could be applied to make robust and durable capillary tubes with inactive inner surfaces. Lee et al. then delineated (12) the chemistry underlying the coating of such capillaries with a variety of stationary phases, and the age of modern high-resolution GC was born. Small diameter fused-silica capillaries were also found by Jorgenson and Lukacs (13) to be suitable for electrodriven separations since the heat generated could be readily dissipated because of the high surface-area-to-volume ratio. The invention of capillary supercritical fluid chromatography (SFC) in 1981 by Lee, Novotny and, co-workers (14) also depended on the availability of fused-silica capillary columns. Liquid chromatography, however, took a different course, largely because slow diffusion in liquids meant that separations in open tubes necessitated inner diameters which were too small to make this approach practical. On the other hand, greatly increased efficiencies could be achieved on columns packed with small silica particles with bonded organic groups, and the technology for such columns was made available following the pioneering work of Horvath et al. (15) and Kirkland (16), thus giving rise to high performance liquid chromatography (HPLC). Even so, the avai...


Similar Free PDFs