STATISTICS FORMULAS (30001) PDF

Title STATISTICS FORMULAS (30001)
Course Statistica / Statistics
Institution UniversitΓ  Commerciale Luigi Bocconi
Pages 7
File Size 154.2 KB
File Type PDF
Total Downloads 176
Total Views 582

Summary

DESCRIPTIVE STATISTICSMeanπ‘₯Μ…=!!"!""β‹―"!null$Rangeπ‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘šβˆ’π‘šπ‘–π‘›π‘–π‘šπ‘’π‘šInterquartile range𝑄!βˆ’π‘„"Outliers are at 𝑄!+1(𝑄!βˆ’π‘„") π‘Žπ‘›π‘‘ 𝑄"βˆ’1(𝑄!βˆ’π‘„")Variance𝑠%=( ! !'!Μ…)""β‹―"( ! #'!Μ…)"$'*Standard deviation𝑠 =%(!!'!Μ…)""β‹―"(!null'!Μ…)"$'*Coefficient of variationCV = |!Μ… |Concentration curve𝐹 -= $𝑄 -=!!"!""β‹―"!$! !"! ""β‹―"! #...


Description

DESCRIPTIVE STATISTICS Mean π‘₯" =

!! "!" "β‹―"!# $

Range π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š βˆ’ π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š

Interquartile range 𝑄! βˆ’ 𝑄" Outliers are at 𝑄! + 1.5(𝑄! βˆ’ 𝑄" )////π‘Žπ‘›π‘‘ ////𝑄" βˆ’ 1.5(𝑄! βˆ’ 𝑄" ) Variance 𝑠% =

(!! '!()" "β‹―"(!# '!()" $'*

Standard deviation 𝑠=%

( !! '!()" "β‹―"(!# '!()" $'*

Coefficient of variation CV =

+

|!( |

Concentration curve

𝐹- = )) $ -

𝑄- =

!! "!" "β‹―"!$ !! "!" "β‹―"!#

Gini’s index

𝑅=

(.! '/!)"β‹―"(.#%! '/#%! ) .! "." "β‹―".#%!

Pietra’s index 𝑃) =

$

$'*

βˆ— max)(𝐹- βˆ’ 𝑄- )

Conditional relative distribution 01-$2345672-853945:;5$74?-$763@-+24-A;2-1$

Covariance πΆπ‘œπ‘£ (𝑋, π‘Œ) =

(!! '!()(=! '=B)"β‹―" (!# '!()(=# '=B) $'*

Pearson’s correlation index

π‘Ÿ=

C18(D,F) +& +'

PROBABILITY Discrete random variable

𝐸(𝑋) = π‘₯* 𝑝* + π‘₯% 𝑝% + β‹― + π‘₯G 𝑝G π‘‰π‘Žπ‘Ÿ ( 𝑋) = (π‘₯* βˆ’ Β΅) % p* + β‹― + (xH βˆ’ Β΅ ) % 𝑝G

Bernoulli random variable

Notation: 𝑋~π΅π‘’π‘Ÿ(𝑝) 𝐸 (𝑋 ) = 𝑝 π‘‰π‘Žπ‘Ÿ(𝑋) = p(1 βˆ’ p)

Linear transformation of one random variable Linear transformation of X: π‘Œ = π‘Ž + 𝑏𝑋 𝐸 (π‘Œ) = π‘Ž + 𝑏𝐸(𝑋) π‘‰π‘Žπ‘Ÿ(π‘Œ) = b% π‘‰π‘Žπ‘Ÿ(𝑋)

Standardization of one random variable Standardization of X: 𝑍 = 𝐸(𝑍) = 0 π‘‰π‘Žπ‘Ÿ(𝑍) = 1

D'I J

Sum of two random variables

𝐸(𝑋 + π‘Œ) = ) πœ‡! + πœ‡= π‘‰π‘Žπ‘Ÿ(𝑋 + π‘Œ) = 𝜎%! + 𝜎=% + 2πΆπ‘œπ‘£ (𝑋, π‘Œ) π‘‰π‘Žπ‘Ÿ(𝑋 + π‘Œ) = 𝜎%! + 𝜎=%

(if correlated) (if not correlated)

Difference of two random variables

𝐸 (𝑋 βˆ’ π‘Œ ) = ) πœ‡! βˆ’ πœ‡= π‘‰π‘Žπ‘Ÿ(𝑋 βˆ’ π‘Œ) = 𝜎%! + 𝜎=% βˆ’ 2πΆπ‘œπ‘£ (𝑋, π‘Œ) π‘‰π‘Žπ‘Ÿ(𝑋 βˆ’ π‘Œ) = 𝜎%! + 𝜎=%

(if correlated) (if not correlated)

Sum of random variables and Central Limit Theorem 𝐸(𝑋) = π‘›πœ‡ π‘‰π‘Žπ‘Ÿ ( 𝑋) = π‘›πœŽ%

Average of random variables and Central Limit Theorem 𝐸(𝑋) = πœ‡ π‘‰π‘Žπ‘Ÿ ( 𝑋) = 𝜎% /𝑛

Sum of Bernoulli random variables and Central Limit Theorem 𝐸 (𝑋 ) = 𝑛𝑝 π‘‰π‘Žπ‘Ÿ(𝑋) = 𝑛𝑝(1 βˆ’ 𝑝)

Average of Bernoulli random variables and Central Limit Theorem 𝐸(𝑋) = 𝑝 π‘‰π‘Žπ‘Ÿ(𝑋) = 𝑝(1 βˆ’ 𝑝)/𝑛

INFERENTIAL STATISTICS CONFIDENCE INTERVALS Normal population, unknown mean, known variance $ %& # Standard normal distribution: K Confidence interval: (π‘₯1βˆ’ 𝑧N

Margin of error: 𝑧N O

'

O

√)

/ , π‘₯1+ 𝑧N )

'

√M

√

O

'

√)

/)

Normal population with unknown mean, unknown variance Student’s t distribution :

$ %& # P

Confidence interval: (π‘₯1βˆ’ 𝑑)%", N √) / , π‘₯1+ 𝑑)%", N √)/) √M

O

+

O

+

Unknown population, estimated mean, estimated variance #$ %&

Standard normal distribution: Confidence interval: (π‘₯1βˆ’ 𝑧N

+

P √M

O √)

/ , π‘₯1+ 𝑧N O

+

√)

)

Bernoulli distribution and population proportion , -%. Standard normal distribution: Confidence interval: (𝑝6 βˆ’ 𝑧N7 Standard error: 7

.("%.) )

O

/Q(RSQ) M

, 𝑝6 + 𝑧N 7

0 ("%.0) . )

O

)

.0("%.0) )

INFERENTIAL STATISTICS HYPOTHESIS TESTING One-sided test with normal population and known variance 𝐻3 : πœ‡ = πœ‡3 /π‘œπ‘Ÿ/πœ‡ ≀ πœ‡3 // 𝐻" :/πœ‡ > πœ‡3 ' π‘₯1> πœ‡3 + 𝑧4 Rejects H0 if: 56%&T K

√)

> 𝑧4

p-value (reject null hypothesis. if p-value < 𝛼): √M

#$%& Pr(𝑋D > π‘₯ 1| 𝐻3 : πœ‡ = πœ‡3 ) = Pr F K T > √M

𝐻3 : πœ‡ = πœ‡3 /π‘œπ‘Ÿ/πœ‡ β‰₯ πœ‡3 // 𝐻" :/πœ‡ < πœ‡3 ' π‘₯1< πœ‡3 βˆ’ 𝑧4 Rejects H0 if: √) 56 %&T K √M

56 %&T K √M

G𝐻3 : πœ‡ = πœ‡3H

< βˆ’π‘§4

#$%& 𝐻3 : πœ‡ = πœ‡3) = Pr F K T < p-value: Pr (𝑋D < π‘₯1| √M

𝐻3 : πœ‡ = πœ‡3 /// 𝐻" :/πœ‡ β‰  πœ‡3 Rejects H0 if:

π‘₯1> πœ‡3 + 𝑧4

|56 %&T | K

p-value: Pr F

$ %&T | |# K √M

>

√M

> 𝑧U

|56%&T | K √M

'

√)

56%&T K √M

or

O

G𝐻3 : πœ‡ = πœ‡3H

π‘₯1< πœ‡3 βˆ’ 𝑧4

G𝐻3 : πœ‡ = πœ‡3H = 2 Pr F

$ %&T | |# K √M

>

'

√)

|56%&T | K √M

G𝐻3 : πœ‡ = πœ‡3 H

One-sided test with normal population and unknown variance 𝐻3 : πœ‡ = πœ‡3 /π‘œπ‘Ÿ/πœ‡ ≀ πœ‡3 // 𝐻" :/πœ‡ > πœ‡3 56 %&T Rejects H0 if: > 𝑑)%",4 P

p-value (reject null hypothesis. if p-value < 𝛼): √M

Pr F

#$%&T P √M

>

56%&T P √M

G𝐻3 : πœ‡ = πœ‡3 H

𝐻3 : πœ‡ = πœ‡3 /π‘œπ‘Ÿ/πœ‡ β‰₯ πœ‡3 // 𝐻" :/πœ‡ < πœ‡3

Rejects H0 if:

56%&T P √

< βˆ’π‘‘)%",4

#$%& p-value: Pr (𝑋D < π‘₯1𝐻| 3 : πœ‡ = πœ‡3) = Pr F P T < M

𝐻3 : πœ‡ = πœ‡3 /// 𝐻" :/πœ‡ β‰  πœ‡3 Rejects H0 if:

√

|56%&T | K √M

6 5%&T P

√M

M

> 𝑑)%",4

#$%& p-value: Pr (𝑋D < π‘₯1𝐻| 3 : πœ‡ = πœ‡3) = 2 Pr F P T <

G𝐻3 : πœ‡ = πœ‡3H

G𝐻3 : πœ‡ = πœ‡3H

56 %&T P √M

√M

One-sided asymptotic test and estimated mean and variance 𝐻3 : πœ‡ = πœ‡3 /π‘œπ‘Ÿ/πœ‡ ≀ πœ‡3 // 𝐻" :/πœ‡ > πœ‡3 56 %&T Rejects H0 if: > 𝑧4 P p-value (reject null hypothesis. if p-value < 𝛼): √M

Pr F

#$%&T P √M

>

56%&T P √M

G𝐻3 : πœ‡ = πœ‡3 H

𝐻3 : πœ‡ = πœ‡3 /π‘œπ‘Ÿ/πœ‡ β‰₯ πœ‡3 // 𝐻" :/πœ‡ < πœ‡3 56 %&T < βˆ’π‘§4 Rejects H0 if: P √M

p-value: Pr (𝑋D < π‘₯1𝐻| 3 : πœ‡ = πœ‡3) = Pr F 𝐻3 : πœ‡ = πœ‡3 /// 𝐻" :/πœ‡ β‰  πœ‡3 Rejects H0 if:

|56%&T | K √M

> 𝑧U O

#$%&T P √M

p-value: Pr (𝑋D < π‘₯1𝐻| 3 : πœ‡ = πœ‡3) = 2 Pr F

<

#$%&T P √M

56%&T

<

P √M

G𝐻3 : πœ‡ = πœ‡3H

G𝐻3 : πœ‡ = πœ‡3H

56 %&T P √M

One-sided Bernoulli distribution with parameter p 𝐻3 : πœ‡ = πœ‡3 / 𝐻" :/πœ‡ > πœ‡3 Rejects H0 if:

,$%.T

Q (RSQT ) / T √M

> 𝑧4

p-value (reject null hypothesis. if p-value < 𝛼):Pr M

,$ %.T

Q (RSQT ) / T √M

>

.6 %.T

Q (RSQT ) / T √M

N𝐻3 : 𝑝 = 𝑝3O

𝐻3 : πœ‡ = πœ‡3 / 𝐻" :/πœ‡ < πœ‡3

Rejects H0 if: p-value: Pr M

𝐻3 : πœ‡ = πœ‡3 /// 𝐻" :/πœ‡ β‰  πœ‡3

,$ %.T

/

Q (RSQT ) / T √M

, $ %.T

QT (RSQT ) √ M

<

.6 %.T

Q (RSQT ) / T √M

|,$ %.T |

Rejects H0 if:

Q (RSQT ) / T √M

p-value: 2 Pr M

|, $ %.T |

Q (RSQT ) / T √M

< βˆ’π‘§4

β‰₯

N𝐻3 : 𝑝 = 𝑝3O

> 𝑧U

O

|.6 %.T |

N𝐻3 : πœ‡ = πœ‡3 O

Q (RSQT ) / T √M

Both normal populations 𝐻3 : πœ‡# βˆ’ πœ‡8 = 0/π‘œπ‘Ÿ/πœ‡# βˆ’ πœ‡8 ≀ 0// 𝐻" :/πœ‡# βˆ’ πœ‡8 > 0 #$%8$ > 𝑑)W :)X%;,4 Rejects H0 if: P P 9 V :: V O

O

𝐻3 : πœ‡# βˆ’ πœ‡8 = 0/π‘œπ‘Ÿ/πœ‡# βˆ’ πœ‡8 β‰₯ 0// 𝐻" :/πœ‡# βˆ’ πœ‡8 < 0 MW

Rejects H0 if:

𝐻3 : πœ‡# βˆ’ πœ‡8 = 0// 𝐻" :/πœ‡# βˆ’ πœ‡8 β‰  0

Rejects H0 if:

MX

#$%8$

O PO P 9 V :: V MW MX

|#$ %8$ |

PO PO 9 V :: V MW MX

< βˆ’π‘‘)W :)X%;,4

> 𝑑)W :)X%;,4

Two populations 𝐻3 : πœ‡# βˆ’ πœ‡8 = 0/π‘œπ‘Ÿ/πœ‡# βˆ’ πœ‡8 ≀ 0/ 𝐻" :/πœ‡# βˆ’ πœ‡8 > 0 #$%8$ > 𝑧4 Rejects H0 if: P 9 V :: PV O

MW

O

MX

𝐻3 : πœ‡# βˆ’ πœ‡8 = 0/π‘œπ‘Ÿ/πœ‡# βˆ’ πœ‡8 β‰₯ 0// 𝐻" :/πœ‡# βˆ’ πœ‡8 < 0

Rejects H0 if:

#$%8$

P P 9 V :: V < O

O

MW

𝐻3 : πœ‡# βˆ’ πœ‡8 = 0// 𝐻" :/πœ‡# βˆ’ πœ‡8 β‰  0 Rejects H0 if:

MX

|#$ %8$ |

O PO P 9 V :: V MW MX

βˆ’π‘§4

> 𝑧U

O

Chi square Null hypothesis: πΉπ‘Ÿ(𝑋 = 𝑖, π‘Œ = 𝑗) = πΉπ‘Ÿ(𝑋 = 𝑖) βˆ— π‘ƒπ‘Ÿ(π‘Œ = 𝑗) = < Ideal independence condition: π‘›πΉπ‘Ÿ(𝑋 = 𝑖, π‘Œ = 𝑗) = π‘›πΉπ‘Ÿ(𝑋 = 𝑖) βˆ— π‘ƒπ‘Ÿ(π‘Œ = 𝑗 ) = 𝑛 )Y βˆ— )Y

Expected absolute frequency in case of independence: 𝐸>? =

E" βˆ‘D?E" 𝐻3 : 𝑋/π‘Žπ‘›π‘‘ /π‘Œ/π‘Žπ‘Ÿπ‘’/𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑑 / 𝐻" :/𝑋/π‘Žπ‘›π‘‘ /π‘Œ/π‘Žπ‘Ÿπ‘’/𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑑 Rejects H0 if: 𝑋 = βˆ‘F>E" βˆ‘D?E"

@AYZ %BYZC BYZ

O

> 𝑋(;F%")(D%"),4

(MISSING LAST CHAPTER ON LINEAR REGRESSION MODEL)

@AYZ %BYZ C BYZ

O...


Similar Free PDFs