Textbook of Membrane Biology PDF

Title Textbook of Membrane Biology
Author Rashmi Wardhan
Pages 385
File Size 23.3 MB
File Type PDF
Total Downloads 268
Total Views 341

Summary

Rashmi Wardhan · Padmshree Mudgal Textbook of Membrane Biology Textbook of Membrane Biology Rashmi Wardhan Padmshree Mudgal • Textbook of Membrane Biology 123 Rashmi Wardhan Padmshree Mudgal Department of Biochemistry Department of Biochemistry Shivaji College Daulat Ram College, University of Delhi...


Description

Rashmi Wardhan · Padmshree Mudgal

Textbook of Membrane Biology

Textbook of Membrane Biology

Rashmi Wardhan Padmshree Mudgal •

Textbook of Membrane Biology

123

Rashmi Wardhan Department of Biochemistry Shivaji College New Delhi, Delhi India

Padmshree Mudgal Department of Biochemistry Daulat Ram College, University of Delhi New Delhi, Delhi India

ISBN 978-981-10-7100-3 ISBN 978-981-10-7101-0 https://doi.org/10.1007/978-981-10-7101-0

(eBook)

Library of Congress Control Number: 2017957718 © Springer Nature Singapore Pte Ltd. 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Dedicated to those who continue to inspire me My teachers for opening up the world … My beautiful daughters who make me proud every day … My husband for the endless encouragement and many cups of tea … and to the power above for being the force with and behind me! Rashmi Wardhan To my parents, who gave me wings, and to family; my husband, Sukrit, my children, Naman and Khyati who helped me soar high. Padmshree Mudgal

Foreword

It gives me immense pleasure to write the foreword to the book titled Textbook of Membrane Biology. In the last few years, membrane biology has emerged as a very specialized field of study with the development of biotechnology. In effect, the plasma membrane has become the target of various drugs in the process of curing diseases. Plasma membranes are permeable barriers between cell and its environment. They control the flow of information and the movement of substances in and out of the cell. Rashmi and Padmshree present a complex purview of the studies in plasma membrane in their book. It draws on existing researches on biomembranes, at the same time offering new perspectives on the subject. Such a book, I believe, will be extremely helpful for the undergraduate students in comprehending the basic concepts to recent advances in the field of biomembranes and membrane-associated processes. Students and researchers will find this book abreast of latest developments and findings on biomembranes. Happy Reading! April 2017

Debi P. Sarkar Ph.D., FAScT, FNASc, FASc, FNA Professor and Head, Former Dean, JC Bose National Fellow Department of Biochemistry University of Delhi South Campus New Delhi, India

vii

Preface

If there is a book you want to read, And it is not written yet, then you must write it Toni Morrison

Charles Darwin had described the process of evolution as “descent with modification.” This phrase best explains the continuous evolution of membrane biology. It is an ever-evolving area of biology and has seen a lot of focus in the last few decades. This book is a very ambitious attempt solely dedicated to membrane biology. The commitment to design each chapter on a skeleton of its key concepts to give students a holistic view of the available knowledge has been maintained throughout the book. The book also juxtaposes the basics of membrane biology with the recent advances in this field. This further aims to enhance the scientific temperament among the readers. This book emphasizes fundamental concepts and scientific inquisitiveness which emerged from decades of classroom experiences and enlightening interactions with the students and subject experts. Each chapter in this book has been designed and crafted to incorporate all the information to cement the concepts of membrane biology even for the beginners. The knowledge of the structural and functional domains of the cell membrane has been harnessed for therapeutic purposes. Membrane and membrane-bound receptors constitute a very large pocket of potential drug targets. The book attempts to embrace the aspects of drug targeting as the modern tool for disease control. The humble attempt to write this book has been gratifying; nevertheless, we echo the thoughts of Thomas Hardy, “The more written, the more it seems to be written.” New Delhi, India

Rashmi Wardhan Padmshree Mudgal

ix

Acknowledgements

This book could be possible only because of our publisher Springer’s trust in our concept and content of this book. I want to thank my parents for giving me right values of life. I acknowledge Ms. Shachi Saluja for her help in reference arrangement and her contribution to hormone receptors chapter. Far away in the sunshine, my inspiration always guides me to the highest. Rashmi Wardhan Padmshree Mudgal acknowledges with thanks Dr. Khyati Sharma for her efforts in proofreading and editing Chaps. 1–5 and 8, and her valuable inputs.

xi

Contents

1

2

Introduction to Biomembranes . . . . . . . . . . . . . . 1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Selectively Permeable Barrier . . . . 1.1.2 Interaction and Communication with External Environment . . . . . . . . . . 1.1.3 Energy Transduction . . . . . . . . . . 1.1.4 Intracellular Transport . . . . . . . . . 1.1.5 Transmission of Nerve Impulse. . . 1.1.6 Cell–Cell Interaction . . . . . . . . . . 1.2 Historical Background . . . . . . . . . . . . . . . . 1.3 Composition of Biological Membranes . . . . 1.3.1 Membrane Lipids . . . . . . . . . . . . 1.3.2 Phospholipids . . . . . . . . . . . . . . . 1.3.3 Glycolipids. . . . . . . . . . . . . . . . . 1.3.4 Sterols . . . . . . . . . . . . . . . . . . . . 1.4 Unique Lipid Composition of Cell Organelle Membranes . . . . . . . . . . . . . . . . . . . . . . . 1.5 Transbilayer Lipid Asymmetry . . . . . . . . . . 1.6 Carbohydrates in Membranes . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

........ ........ ........

1 1 1

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

1 1 1 2 2 2 7 9 10 14 14

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

15 17 20 27

Membrane Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Lipid Water Systems: Thermodynamics, CMC . . . . 2.1.1 Determination of CMC . . . . . . . . . . . . . 2.1.2 Surface Tension . . . . . . . . . . . . . . . . . . 2.1.3 Conductivity. . . . . . . . . . . . . . . . . . . . . 2.1.4 Polymorphic Lipid–Water Systems/Phases 2.2 Determinants of Polymorphic Phases: Shapes, Critical Packing Parameter . . . . . . . . . . . . . . . . . . 2.3 Lipid Phase Transitions . . . . . . . . . . . . . . . . . . . . 2.4 Technique Used to Study Lipid Phase Transitions. . 2.5 Factors Affecting Lipid Phase Transitions . . . . . . . 2.6 Polymorphic Lipid Phases and Their Physiological Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 Membrane Curvature . . . . . . . . . . . . . . . 2.6.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.3 Transbilayer Transport . . . . . . . . . . . . . . 2.6.4 Lipid Rafts . . . . . . . . . . . . . . . . . . . . . .

. . . . . .

. . . . . .

. . . . . .

29 29 30 30 31 31

. . . .

. . . .

. . . .

33 35 35 36

. . . . .

. . . . .

. . . . .

37 38 39 41 41 xiii

xiv

Contents

2.7

Model Membrane Systems . . . . . . . . . . . . . . . . . . 2.7.1 Lipid Monolayers . . . . . . . . . . . . . . . . . 2.7.2 Supported Planar Lipid Bilayer . . . . . . . . 2.7.3 Planar Bilayer at the Tip of Patch Pipette . 2.7.4 Liposomes . . . . . . . . . . . . . . . . . . . . . . 2.7.5 Nanodisks . . . . . . . . . . . . . . . . . . . . . . 2.7.6 Black Lipid Membranes (BLMs) . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4

Membrane Proteins . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Types of Membrane Proteins . . . . . . . . . . . . . 3.1.1 Peripheral Proteins . . . . . . . . . . . . . 3.1.2 Integral Membrane Proteins (IMP). . . 3.1.3 Lipid-Anchored Proteins . . . . . . . . . 3.2 Techniques to Study Membrane Proteins . . . . . 3.2.1 Cell Disruption Methods . . . . . . . . . 3.2.2 Membrane Separation and Isolation . . 3.2.3 Solubilization of Membrane Proteins . 3.2.4 Membrane Protein Purification and Characterization . . . . . . . . . . . . . . . 3.3 Membrane Protein Topology . . . . . . . . . . . . . 3.3.1 The Major Membrane Topology Determinants Are as Follows . . . . . . 3.3.2 Experimental Tools to Determine the Membrane Topology of Proteins . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

42 42 43 43 44 46 47 47

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

49 49 50 53 59 64 64 67 71

...... ......

74 76

......

78

...... ......

78 79

. . . . . . . . .

. . . . . . . . .

Function and Characterization of Cellular Membranes 4.1 Plasma Membrane: Specialized Membrane Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Tight Junctions . . . . . . . . . . . . . . . . . . 4.1.2 Desmosomes . . . . . . . . . . . . . . . . . . . 4.1.3 Hemidesmosomes . . . . . . . . . . . . . . . . 4.1.4 Gap Junctions . . . . . . . . . . . . . . . . . . . 4.1.5 Lipid Rafts . . . . . . . . . . . . . . . . . . . . . 4.2 The Nuclear Envelope . . . . . . . . . . . . . . . . . . . . 4.2.1 Nuclear Envelope Breakdown During Mitosis . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 The Nuclear Envelope Reformation . . . . 4.3 Endoplasmic Reticulum . . . . . . . . . . . . . . . . . . . 4.4 Golgi Apparatus . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Functions of Golgi Apparatus . . . . . . . . 4.5 Lysosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Outer and Inner Mitochondrial Membranes . . . . . 4.6.1 The Mitochondrial Outer Membrane (MOM) . . . . . . . . . . . . . . . . . . . . . . . 4.6.2 The Inner Membrane . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .

....

81

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

81 81 84 85 86 90 93

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

94 96 97 102 103 107 111

.... .... ....

112 116 119

Contents

xv

5

6

Membrane Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Membrane Fluidity . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Motion of Membrane Components . . . . . . . . . . . . . . 5.3 Factors Affecting Membrane Fluidity . . . . . . . . . . . . 5.3.1 Lipid Composition . . . . . . . . . . . . . . . . . . 5.3.2 Diet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . 5.3.4 Osmotic Stress . . . . . . . . . . . . . . . . . . . . . 5.3.5 Cell Cycle and Development . . . . . . . . . . . 5.3.6 Disease . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.7 Anesthetics. . . . . . . . . . . . . . . . . . . . . . . . 5.3.8 Ca2+ and Other Divalent Cations. . . . . . . . . 5.4 Techniques to Determine the Rate of Molecular Motion in Membranes . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 Techniques to Study Lateral Diffusion in Membranes. . . . . . . . . . . . . . . . . . . . . . . . 5.4.2 Confocal Microscopy. . . . . . . . . . . . . . . . . 5.4.3 Fluorescence Recovery After Photobleaching (FRAP) . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.4 Fluorescence Correlation Spectroscopy (FCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.5 Förster Resonance Energy Transfer (FRET) . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.6 Single-Particle Tracking (SPT) . . . . . . . . . . 5.4.7 Techniques to Study Rotational Motion in Membranes. . . . . . . . . . . . . . . . . . . . . . . . 5.4.8 Techniques to Study Transbilayer Motion in Membranes. . . . . . . . . . . . . . . . . . . . . . . . 5.5 Barriers Affecting Lateral Diffusion of Molecules in Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1 Physical Barriers . . . . . . . . . . . . . . . . . . . . 5.5.2 The Cytoskeleton . . . . . . . . . . . . . . . . . . . 5.5.3 Membrane–Membrane Junctions . . . . . . . . . 5.5.4 Membrane–Matrix Junctions . . . . . . . . . . . . 5.5.5 Intramembranous Clusters . . . . . . . . . . . . . 5.6 Polarized Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.1 Epithelial Cell. . . . . . . . . . . . . . . . . . . . . . 5.6.2 Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Organization of the Erythrocyte Membrane . . . . . . . . 5.7.1 Membrane Proteins . . . . . . . . . . . . . . . . . . 5.7.2 Integral Membrane Proteins . . . . . . . . . . . . 5.7.3 Peripheral Membrane Proteins. . . . . . . . . . . 5.8 Homeoviscous Adaptation . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Membrane Transport . . . . . . . . . . . . . . . . . . . . 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 6.2 Passive Diffusion . . . . . . . . . . . . . . . . . . 6.3 Facilitated Transport of Glucose . . . . . . . . 6.4 Facilitated Chloride–Bicarbonate Transport

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . . . . . . . . .

121 121 121 124 124 125 125 125 125 125 126 126

.

126

. .

126 126

.

127

.

128

. .

129 131

.

131

.

132

. . . . . . . . . . . . . . .

134 134 134 136 136 136 138 138 139 140 141 143 144 145 146

. . . . .

149 149 150 151 154

xvi

Contents

6.5 6.6

Primary Active Transport. . . . . . . . . . . . . . . . . . . . . . P-Type (E1–E2) ATPases . . . . . . . . . . . . . . . . . . . . . . 6.6.1 Structure of P-Type ATPases . . . . . . . . . . . . 6.6.2 Phosphorylation Domain . . . . . . . . . . . . . . . 6.6.3 Nucleotide-Binding Domain . . . . . . . . . . . . . 6.6.4 The Actuator Domain . . . . . . . . . . . . . . . . . 6.6.5 Membrane Domain . . . . . . . . . . . . . . . . . . . 6.6.6 Transport Cycle of P-Type ATPases . . . . . . . 6.7 Vacuolar [V-Type] ATPases. . . . . . . . . . . . . . . . . . . . 6.8 Secondary Transport . . . . . . . . . . . . . . . . . . . . . . . . . 6.8.1 Secondary Transport of Disaccharide Lactose by Lactose Permease (LacY) . . . . . . . . . . . . 6.8.2 Sodium/Glucose Secondary Transport . . . . . . 6.9 ABC Transporter . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.9.1 Mechanism of ABC Transporter . . . . . . . . . . 6.9.2 Classification of ABC Transporters in Mammals . . . . . . . . . . . . . . . . . . . . . . . . . . 6.10 Lipid Transporters in Maintaining Membrane Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.11 Aquaporins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.11.1 Structure and Function of Aquaporins . . . . . . 6.12 Active Transport Through Group Translocation in Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.12.1 Phosphoenolpyruvate (PEP): Carbohydrate Phosphotransferase System . . . . 6.13 Light-Driven Transport . . . . . . . . . . . . . . . . . . . . . . . 6.14 Pore-Forming Toxins. . . . . . . . . . . . . . . . . . . . . . . . . 6.14.1 Activated Signal Pathway and Toxin Effect in Host Cells . . . . . . . . . . . . . . . . . . . 6.15 Ionophores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.16 Porins in Biological Membranes . . . . . . . . . . . . . . . . . 6.17 Transport by Channel Proteins . . . . . . . . . . . . . . . . . . 6.18 Transport Through Ion Channel P2X Receptors . . . . . . 6.19 The Pentamer Cysteine Loop Gama-Amino Butyric Acid Receptors (GABAA) . . . . . . . . . . . . . . . . . . . . . 6.20 Tetrameric Ionotropic Glutamate Receptor Channels N-Methyl-D-Aspartate (NMDA) . . . . . . . . . . . . . . . . . 6.21 Voltage-Gated Ion Channels. . . . . . . . . . . . . . . . . . . . 6.22 K2P Channels Are Not Leaky Channels . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

Nerve 7.1 7.2 7.3 7.4 7.5 7.6 7.7

Transmission . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . Nernst Equation . . . . . . . . . . . Nerve Cell . . . . . . . . . . . . . . . Resting Membrane Potential. . . Action Potential . . . . . . . . . . . 7.5.1 Refractory Period . . . Propagation of Action Potential Saltatory Conduction . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

156 156 158 158 158 159 159 159 160 163 164 165 167 168 169 170 171 171 174 174 175 179 186 186 191 194 194 194 196 198 201 202 205 205 205 207 209 210 212 213 213

Contents

xvii

7.8 Electrical and Chemical Synapses . . . . . . . . . . . . . . . . 7.9 Exocytosis of Neurotransmitter . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Bioenergetics and Energy Transduction. . . . . . . . . . . . . 8.1 Bioenergetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.1 Difference Between G and Go′ . . . . . . 8.1.2 Energy Currency of the Cell . . . . . . . . . . 8.2 Oxidation–Reduction Potential . . . . . . . . . . . . . . . 8.3 Types of Electr...


Similar Free PDFs