Tubo Pitot PDF

Title Tubo Pitot
Author Ricardo Martelo
Course Ingeniería de Fluidos
Institution Universidad de Córdoba Colombia
Pages 9
File Size 446.9 KB
File Type PDF
Total Downloads 77
Total Views 144

Summary

Download Tubo Pitot PDF


Description

Tubo Pitot Tubo de pitot El tubo de pitot se utiliza para establecer la velocidad del flujo a través de la medición de la presión de estancamiento (la presión en una rama paralela a la dirección del flujo y ocluida en su otro extremo que es igual a la suma de la presión estática y la presión dinámica. la presión estática es la presión de un fluido medida en un punto. la presión total se mide en el extremo ocluido. el valor de la presión dinámica que depende de la velocidad del flujo y su densidad se calcula por la diferencia entre las medidas, en este caso con el desplazamiento del diafragma Es utilizado para la medición del caudal, está constituido por dos tubos que detectan la presión en dos puntos distintos de la tubería. Pueden montarse por separado o agrupados dentro de un alojamiento, formando un dispositivo único. Uno de los tubos mide la presión de impacto en un punto de la vena. el otro mide únicamente la presión estática, generalmente mediante un orificio practicado en la pared de la conducción. Un tubo de pitot mide dos presiones simultáneamente, la presión de impacto (pt) y presión estática (ps). La unidad para medir la presión de impacto es un tubo con el extremo doblado en ángulo recto hacia la dirección del flujo. El extremo del tubo que mide presión estática es cerrado pero tiene una pequeña ranura de un lado. Los tubos se pueden montar separados o en una sola unidad. En la figura siguiente se muestra un esquema del tubo pitot La ecuación de Bernoulli nos muestra:

La presión diferencial medida a través del tubo pitot puede calcularse utilizando la ecuación de Bernoulli, y resulta ser proporcional al cuadrado de la velocidad del fluido

El tubo de Pitot se utiliza para medir presión total o de oclusión al tiempo que se mide la estática. Resolviendo la ecuación de Bernoulli obtenemos la velocidad del flujo.

Cambios en los perfiles de velocidad del flujo pueden causar errores significativos. Por esta razón los tubos pitot se utilizan se utilizan principalmente para medir presiones de gases, ya que en este caso, los cambios en la velocidad del flujo no representan un inconveniente serio. Partículas que pueda tener el flujo. Las aplicaciones de los tubos de pitot están muy limitadas en la industria, dada la facilidad con que se obstruyen por la presencia de cuerpos extraños en el fluido a medir. En general, se utilizan en tuberías de gran diámetro, con fluidos limpios, principalmente gases y vapores. Su precisión depende de la distribución de las velocidades y generan presiones diferenciales muy bajas que resultan difíciles de medir. Aplicaciones

Velocímetro Dispositivo para medir la velocidad de un vehículo. La medición suele efectuarse determinando el número de revoluciones a lo largo de un intervalo de tiempo conocido, o mediante un instrumento que determina directamente el número de revoluciones por minuto o por segundo. Un ejemplo del segundo caso es el velocímetro de un automóvil, en el que un cable flexible unido al árbol de la transmisión hace girar un imán permanente. Esto induce un campo magnético que tiende a arrastrar un tambor que rodea al imán. El tambor está restringido por un resorte conectado a una aguja. Cuanto mayor es la velocidad del vehículo, más fuerza se ejerce sobre el tambor y más alta es la desviación de la aguja.

En los automóviles modernos el velocímetro ya no está conectado mecánicamente a la transmisión. Un dispositivo situado en la transmisión produce una serie de pulsos eléctricos cuya frecuencia varía de acuerdo con la velocidad del vehículo; estos pulsos eléctricos se transmiten a un dispositivo calibrado que determina la velocidad y envía dicho dato al salpicadero, donde puede leerse a partir de la desviación de una aguja o directamente en una pantalla digital.

Los velocímetros de los aviones, que indican la velocidad aerodinámica, es decir, con respecto al aire, se basan en la medida de la presión cinética. el llamado tubo de pitot, inventado por el físico e ingeniero francés henri pitot, es un tubo lleno de mercurio y provisto de dos aberturas, una orientada en la dirección del flujo de aire y la otra perpendicular a éste. Cuando el avión está detenido, la presión en ambas aberturas es la misma. Cuando el avión se mueve, el aumento de la presión en la rama cuya abertura está orientada en la dirección del flujo de aire empuja el mercurio hacia la otra rama; la altura del mercurio en dicha rama indica la velocidad aerodinámica. la velocidad de un vehículo acuático se mide a menudo mediante un instrumento remolcado que consiste en una pequeña hélice, cuya velocidad de giro depende de la velocidad lineal del buque. la hélice está conectada con un instrumento calibrado situado en el barco. el término tacómetro suele aplicarse a los instrumentos empleados para medir la velocidad angular de un mecanismo en revoluciones por minuto. muchos automóviles tienen tacómetros que miden el número de revoluciones del cigüeñal del motor.

Anemómetro

Del griego, anemos, viento; metron, medida, instrumento que mide la velocidad del viento. El tipo más común de anemómetro consiste en tres o cuatro semiesferas unidas a

unas varillas cortas conectadas a su vez a un eje vertical en ángulos rectos. El viento, al soplar, empuja las semiesferas y estas hacen girar el eje. El número de vueltas por minuto se traduce en la velocidad del viento con un sistema de engranajes similar al del indicador de velocidad de los vehículos de motor. la velocidad del viento se mide también por la presión del aire sobre un tubo de pitot (un tubo con forma de l, con un extremo abierto hacia la corriente de aire y el otro conectado a un dispositivo medidor de presión) o eléctricamente por el efecto refrigerador del viento sobre un alambre donde se produce una variación de la resistencia eléctrica

EFECTO VENTURI EFECTO VENTURI El efecto Venturi consiste en que un fluido en movimiento dentro de un conducto cerrado disminuye su presión cuando aumenta la velocidad al pasar por una zona de sección menor. En ciertas condiciones, cuando el aumento de velocidad es muy grande, se llegan a producir presiones negativas y entonces, si en este punto del conducto se introduce el extremo de otro conducto, se produce una aspiración del fluido de este conducto, que se mezclará con el que circula por el primer conducto. Este efecto, demostrado en 1797, recibe su nombre del físico italiano Giovanni Battista Venturi TUBO VENTURI Un tubo de Venturi es un dispositivo inicialmente diseñado para medir la velocidad de un fluido aprovechando el efecto Venturi. Efectivamente, conociendo la velocidad antes del estrechamiento y midiendo la diferencia de presiones, se halla fácilmente la velocidad en el punto problema. La aplicación clásica de medida de velocidad de un fluido consiste en un tubo formado por dos secciones cónicas unidas por un tubo estrecho en el que el fluido se desplaza consecuentemente a mayor velocidad. La presión en el tubo Venturi puede medirse por un tubo vertical en forma de U conectando la región ancha y la canalización estrecha. La diferencia de alturas del líquido en el tubo en U permite medir la presión en ambos puntos y consecuentemente la velocidad. En otros casos utiliza este efecto para acelerar la velocidad de un fluido obligándole a atravesar un tubo estrecho con el extremo en forma de cono. Estos modelos se utilizan en numerosos dispositivos en los que la velocidad de un fluido es importante y constituyen la base de aparatos como el carburador Cuando se utiliza un tubo de Venturi hay que tener en cuenta un fenómeno que se denomina. Cavitación. Este fenómeno ocurre si la presión en alguna sección del tubo es menor que la presión de vapor del fluido. Para este tipo particular de tubo, el riesgo de cavitación se encuentra en la garganta del mismo, ya que aquí, al ser mínima el área y máxima la velocidad, la presión es la menor que se puede encontrar en el tubo. Cuando ocurre la cavitación, se generan burbujas localmente, que se trasladan a lo largo del tubo. Si estas burbujas llegan a zonas de presión más elevada, pueden colapsar produciendo así picos de presión local con el riesgo potencial de dañar la pared del tubo.

A MAYOR PRESION MENOR VELOCIDAD Y A MENOR PRESION MAYOR LA VELOCIDAD

APLICACIONES TUBO VENTURI



Tubos de Venturi: Medida de velocidad de fluidos en conducciones y aceleración de fluidos.



Hidraulica: La depresión generada en un estrechamiento al aumentar la velocidad del fluido, se utiliza frecuentemente para la fabricación de máquinas que proporcionan aditivos en una conducción hidráulica. Es muy frecuente la utilización de este efecto

“Venturi” en los mezcladores del tipo Z para añadir espumógeno en una conducción de agua para la extinción. 

Motor: el carburador aspira el carburante por efecto Venturi, mezclándolo con el aire (fluido del conducto principal), al pasar por un estrangulamiento. Neumática: Para aplicaciones de ventosas y eyectores



Aeronáutica: Interviene en efectos relacionados con la viscosidad del aire que pueden explicarse con las Ecuaciones de Navier-Stokes. Además, se utiliza un tubo Venturi para proveer succión a los instrumentos que trabajan con vacío, (Coordinador de giro, Horizonte artificial, etc.) en los aviones que no están provistos de bombas mecánicas de vacío. Aunque el efecto Venturi se utiliza frecuentemente para explicar la sustentación producida en alas de aviones, este efecto realmente no puede explicar la sustentación aérea, pues un perfil alar no actúa como un tubo de Venturi acelerando las partículas de aire: las partículas son aceleradas debido a la conservación de la energía (se explica mediante el principio de Bernoulli, en virtud del cual el aire adquiere mayor velocidad al pasar por la región convexa del ala de un avión), la conservación del momento (se utiliza la tercera ley de Newton para su explicación) y de la masa (se utilizan las Ecuaciones de Euler).



Hogar: En los equipos ozonificadores de agua, se utiliza un pequeño tubo Venturi para efectuar una succión del ozono que se produce en un depósito de vidrio, y así mezclarlo con el flujo de agua que va saliendo del equipo con la idea de destruir las posibles bacterias patógenas y de desactivar los virus y otros microorganismos que no son sensibles a la desinfección con cloro.



Acuarofilia: En las tomas de bombas de agua o filtros, el efecto Venturi se utiliza para la inyección de aire y/o CO2.



Cardiología: El efecto Venturi se utiliza para explicar la regurgitación mitral que se puede dar en la miocardiopatía hipertrófica, y que es causa de muerte súbita en deportistas. La explicación es que el movimiento sistólico anterior (MSA) que realiza la valva anterior de la válvula mitral, se produce porque la hipertrofia septal y el estrechamiento del tracto de salida provocan una corriente de alta velocidad sobre la v. mitral, que debido al efecto Venturi, succiona el extremo de la valva anterior contra el septo, que impide la salida de sangre, por lo que regurgita hacia la aurícula izquierda.



Neumología: El efecto Venturi se utiliza en máscaras para la administración de concentraciones exactas de oxígeno, para controlar la FiO2; se denominan máscaras de Venturi o Ventimask. El oxígeno al 100% suministrado durante cierto periodo de tiempo es tóxico, por lo que se mezcla con aire externo cuya concentración de oxígeno es del 21%, de modo que en función de la cantidad de aire que se mezcle con el oxígeno al 100%, la concentración de oxígeno será mayor o menor, normalmente se suministra entre un 26%50%. El oxígeno puro al pasar por el conducto con un calibre menor, se produce el efecto Venturi, se genera una presión negativa que permite la entrada del aire procedente del exterior a través de unos orificios circundantes, dependiendo del tamaño de los orificios, entra más o menos aire y por tanto menor o mayor concentración de oxígeno que finalmente el paciente recibirá.



Odontología: el sistema de aspiración de saliva en los equipos dentales antiguos utilizaban tubos finos Venturi. Ahora la aspiración está motorizada. Ejercicios Resueltos del Tubo de Venturi Problema 1.– Un tubo de venturi en su parte más ancha posee un diámetro de 0.1524 m y una presión de 4.2 x10^4 N/m^2 . En el estrechamiento , el diámetro es de 0.0762 m y la presión es de 3×10^4 N/m^2 . ¿Cuál es la magnitud de la velocidad inicial del agua que fluye a través de la tubería? Solución: Analicemos primeramente nuestros datos:

Esta es la fórmula que usaremos:

Para no confundirnos, es mejor resolver primero lo que tenemos en el numerador dentro de la raíz, y después lo del denominador, es decir:

Después el denominador, no sin antes calcular las áreas por separado.

Ahora si calculamos el denominador:

Entonces sustituyendo nuestros datos:

Qué sería nuestra velocidad inicial. Problema 2.- En la parte más ancha de un tubo de Venturi hay un diámetro de 10.16 cm y una presión de 3×10^4 N/m^2 . En el estrechamiento del tubo, el diámetro mide 5.08 cm y tiene una presión de 1.9×10^4 N/m^2. a) Calcule la velocidad inicial del agua que fluye a través de la tubería. b) ¿Cuál es el gasto? c) ¿Cuál es el flujo? Solución: Nuevamente tenemos un problema con las características iniciales del problema 1, por lo que lo más recomendable es recopilar nuestros datos, así que colocamos:

Posteriormente, vamos a convertir los diametros a área, lógicamente tenemos que usar la unidad de longitud en metros, y no en centímetros, esto es muy importante.

Ahora calculemos las áreas.

Ahora nuevamente como el ejercicio anterior, calculemos por separado lo del numerador y denominador que están dentro de la raíz cuadrada.

Ahora el denominador

Es momento de calcular nuestra velocidad inicial.

Qué sería nuestra velocidad inicial, que es lo que nos pide el problema. Con esto podemos afirmar que el Tubo de Venturi, es una gran aplicación más del Principio de Bernoulli, espero que hayas entendido los ejercicios aquí propuestos, si tienes dudas, favor de dejarlas en la caja de comentarios aquí abajo....


Similar Free PDFs