Week5exercises - from text PDF

Title Week5exercises - from text
Author Heather Terrill
Course Differential Equations
Institution Southern New Hampshire University
Pages 5
File Size 118.7 KB
File Type PDF
Total Downloads 73
Total Views 118

Summary

Final exam, with the work shown. Given at the end of the course...


Description

Charles Terrill Southern New Hampshire University Module 5 Problem Set – 3.4 (2,16); Section 3.5 (2) 3.4 2. The force due to gravity is: F1=400 lb The force due to air resistance is: F2 =−10 v

The net force acting on the object is: F =F1 + F 2=400−10 v The force does not depend on x, enabling us to regard the above equation as an FOE.

m

dv =F (t , v ) dt

Then,

F1=mg→ m=

F 1 400 = =12.5 slug g 32

Now we apply newton’s second law:

m

dv =400−100 v dt

Integrate:

12.5

dv =400−10 v dt

dv =32−0.8 v dt

1 dv=−dt 0.8 v−32

1

∫ .8 v−32 dv=−∫ dt 5 ln |.8 v− 32|=−t +C1 4 ln|.8 v −32|=−.8 t +C2 −0.8t

0.8 v −32=e

+ C2

−.8 t

0.8 v −32=C 3 e

t 0.8 v =32+ C−.8 3e

−.8t

v (t ) =40+ C e

Using substitution value condition, we find the value of C: 0

0=40+C e

−40 =C

0=40+C

Therefore: v (t ) =40 −40 e−.8 t Integrate: x (t ) =∫ v ( t ) dt=∫ ( 40−20 e

−.8t

) dt

x (t ) =40 t+50 e−.8 t + C Substitute the initial value condition x(0) = 0 and obtain the value of C: 0=40 ( 0) + 50 e 0 + C

0=50+C

−50=C

−.8 t

x (t )=40 t+50 e

−50

According to the problem the object hits the ground at 500:

500=40 t−50 ( 1−e−.8t )

500=40 t−50

500 + 50=40 t

−.8t

500=40 t+50 e

t=

−50

500+ 50 40

t ≈ 13.75 sec

16. Notation: T – Motor Torque ω – angular velocity I – inertia ω1 =initial angular velocity

When friction is the reason torque is slowing or ceasing and is proportional to the angular velocity we use: T 1 =K √ω K is proportionally constant. Use the Torque formula: Moment of inertia x angular acceleration = sum of the torques we get:

I

dw =T −K √ ω dt

We use separation of variables in order to solve the differential equation:

Id ω =dt T −K √ ω

√ ω−

⇒−

2 I √ ω − 2TIln|T −K √ ω | =t+C1 K K2

TIln |T −K √ ω| =t +C1 K 2I ⇒ ¿ K

⇒K √ ω−Tln|T −K √ ω|=

⇒√ ω−

2

K t +C 2I

TIln|T −K √ ω| Kt = +C 2 K 2I

C=K √ ω0−Tln∨T − K √ω0 ∨¿

K √ω−Tln|T −K √ ω|=K √ ω 0−Tln|T −K √ ω0|−

K2t 2I

Section 3.5 (2) 2. I used equation 3 on page 119 which is a general equation. e 100t

sin 100 t dt + K 0.000001 ∫¿ −100 t ¿ I (t )=e

100 t 100 sin 100 t−100 cos ¿ ¿ t e 100 ¿ 100 ¿ −100t ¿e ¿

¿

sin 100 t−cos 100 t +K e−100 t 2

For I(0)= 0, we obtain -1.2+K=0 so K=1/2 and the current is : sin 100 t−cos 100 t+e−100 t I ( 0 )=.5 ¿

The resistor and inductor voltages are given by E R ( t) =RI ( t ) =I ( t )

E L ( t) =L

dI =( 0.5)( cos 100t +sin 100 t−e−100t ) dt

Applying Kirchoff’s Voltage law yields: RI +q∨C=e (t) The capacitor is the rate of change of its charge: I= dq/dt I followed the steps in the second example but when I look up the answer to number one in the book, I see mine isn’t looking similar. Not sure what I am doing in the first place just trying to figure it out step by step....


Similar Free PDFs