2. Ejemplo 1 - Perceptron Multicapa PDF

Title 2. Ejemplo 1 - Perceptron Multicapa
Course Intelegencia Artificial
Institution Universidad Popular del Cesar
Pages 18
File Size 447.5 KB
File Type PDF
Total Downloads 36
Total Views 176

Summary

Ejemplos de la elaboracion de un algoritmo de red neuronal llamado percetron unicapa...


Description

Ejercicios resueltos de redes neuronales – Perceptron Multicapa 1. … Neurona de entrada 1 2 3 4

1 2 3 4 5 6 7 8 9

Síntoma

Valor 0

Valor 1

Dolor de cabeza Fiebre Tos Dolor de rodilla

No No No No

Si Si Si Si

x1

x2

x3

x4

yd 1

yd 2

1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1

1.2 2,2 3.2 4.2 5.2 6.2 7.2 8.2 9.2

1.3 2.3 3.3 4.3 5.3 6.3 7.3 8.3 9.3

1.4 2.4 3.4 4.4 5.4 6.4 7.4 8.4 9.4

1 1 1 0 1 1 0 0 1

0 1 1 0 1 1 0 0 0

Solución   

Entradas = 4 Salidas = 2 Patrones = 10

1. Definir parámetros de entrenamiento  Número de capas [0…3] = 3  Número de neuronas para la capa 1= 6  Número de neuronas para la capa 2= 5  Número de neuronas para la capa 3= 4  Número de iteraciones = 1000  Rata de aprendizaje [0...1] = α = 1 

Rata de aprendizaje dinámica



Error máximo permitido = 0.01

2. Crear e inicializar la red 2.1. Presentar el vector de entrada

μ → R . A=

1 It

2.2. Inicializar pesos y umbrales

[

0.1 0.2 WE 4 x 6= 0.3 0.4

0.2 0.3 0.4 0.5

0.3 0.4 0.5 0.6

0.4 0.5 0.6 0.1

0.5 0.6 0.1 0.2

U 1i=[ 0.1 0.2 0.3 0.4 0.5 0.6]

[

0.1 0.2 0.3 WF 6 x 5= 0.4 0.5 0.1

0.2 0.3 0.4 0.5 0.1 0.2

0.3 0.4 0.5 0.1 0.2 0.3

]

0.4 0.5 0.1 0.2 0.3 0.4

0.5 0.1 0.2 0.3 0.4 0.5

U 2J =[0.1 0.2 0.3 0.4 0.5 ]

[

0.1 0.2 WG5 x 4 = 0.3 0.4 0.1

0.2 0.3 0.4 0.1 0.2

0.3 0.4 0.1 0.2 0.3

0.4 0.1 0.1 0.3 0.4

U 3K =[ 0.1 0.2 0.3 0.4 ]

[ ]

0.1 WS 4 x2= 0.3 0.5 0.7

0.2 0.4 0.6 0.8

]

]

0.6 0.1 0.2 0.3

UsL =[ 0.1 0.2 ] m=4(Entrada) n=6(1 °capa oculta) ñ=5 ( 2° capa oculta ) 0=4 (3 °capa oculta) p=2( salida ) 3. Iniciar el entrenamiento Patrón 1 3.1. Calculamos la salida de la red (Patrón 1)

[∑ ( [∑ ( [∑ ( m

h 1i=∂

x h ∙WE hi) −U 1i

h=1

]

i =1.. n

n

h 2 j=∂

h 1i ∙ WF ij )−U 2J

i=1

]

ñ

h 3k =∂

[

j =1

h 2 j ∙WG jk )−U 3k

o

S L =∂ ∑ ( h 3k ∙WSkL ) −Us L k=1

j=1.. ñ

]

k=1..o

]

L =1.. p

Para

[ [∑ ( m

h 1i=∂

] ]

( x h ∙WE hi) −U 1i ∑ i =1.. n h=1 4

h 11=∂

x h ∙WE hi) −U 1i

h=1

i =6

h 11=( x 1 ∙ WE11 ) +( x 2 ∙ WE21 )+ ( x 3 ∙ WE 31 )+ ( x 4 ∙ WE 41)

h 11=(1.1 ∙ 0.1 ) +( 1.2 ∙ 0.2 )+ (1.3 ∙ 0.3 ) + (1.4 ∙ 0.4 ) h 11=1.3 h 11=h 11−U 11

h 11=1.3− 0.1 h 11=1.2 h 12=( x 1 ∙ WE12 ) +( x 2 ∙ WE 22 )+ ( x3 ∙WE 32 )+ ( x 4 ∙WE 42 )

h 12=(1.1 ∙ 0.2 ) +( 1.2 ∙ 0.3 )+ ( 1.3 ∙ 0.4) + ( 1.4 ∙ 0.5) h 12=1.8 h 12=h 12−U 12

h 12=1.8− 0.2

h 12=1.6 h 13=( x 1 ∙ WE13 ) +( x 2 ∙WE 23 ) +( x 3 ∙ WE33 )+ ( x 4 ∙ WE 43) h 13=(1.1 ∙ 0.3 ) +( 1.2 ∙ 0.4 )+ ( 1.3 ∙ 0.5) + ( 1.4 ∙ 0.6) h 13=2.3

h 13=h 13−U 13 h 13=2.3 −0.3

h 13=2 h 14=( x1 ∙WE 14 ) +( x 2 ∙ WE 24 )+ ( x 3 ∙ WE34 ) +( x 4 ∙ WE 44 ) h 14=(1.1 ∙ 0.4 ) +( 1.2 ∙ 0.5 ) + (1.3 ∙ 0.6 )+ (1.4 ∙ 0.1 ) h 14=1.96

h 14=h1 4−U 14 h 14=1.96 −0.4

h 14=1.56 h 15=( x 1 ∙ WE15 ) +( x 2 ∙WE 25 ) +( x 3 ∙ WE35 )+ ( x 4 ∙ WE 45) h 15=(1.1 ∙ 0.5 ) +( 1.2 ∙ 0.6 )+ ( 1.3 ∙ 0.1) + (1.4 ∙ 0.2 ) h 15=1.68

h 15=h 15−U 14 h 15=1.68− 0.5

h 15=1.18 h 16=( x 1 ∙ WE 16) +( x 2 ∙WE 26 ) +( x 3 ∙ WE 36)+ ( x 4 ∙WE 46 ) h 16=(1.1 ∙ 0.6 ) +( 1.2 ∙ 0.1 )+ ( 1.3 ∙ 0.2) + (1.4 ∙ 0.3 ) h 16=1.46

h 16=h 15−U 14 h 16=1.46 −0.6

h 16=0.86 

Aplicamos la función de activación (Simoidal)

h 11=

1 1+e−h1

1

1 h 11 = 1+ e−1.2

h 11=0.768524783499 h 12=

1 1+e−h1

h 12=

1 1+e−1.6

2

h 12=0.8320183851339 h 13=

1 1+e−h 1

3

h 13=

1 1+e−2

h 13=0.8807970779779 h 14=

1 −h 1 1+e

4

1 h 14 = −1.56 1+e h 14= 0.826353352981 h 15=

1 1+e−h 1

5

h 15=

1 1+e−1.18

h 15=0.7649478037638 1 h 16 = −h 1 1+ e

6

1 h 16 = −0.86 1+e h 16=0.7026606543447

[ [∑ ( n

h 2 j=∂

∑ (h 1i ∙ WF ij )−U 2J i=1 6

h 2 j=∂

h 1i ∙ WF ij )−U 2J

i=1

] ]

j=1.. ñ

j=5

h 21=(h 11 ∙ WF 11 ) +( h12 ∙WF 21) +( h13 ∙WF 31 ) + ( h 14 ∙ WF 41 ) + ( h 15 ∙ WF 51) + ( h 16 ∙ WF 61 )

h 21=(0.768524783499 ∙ 0.1 ) +( 0.8320183851339 ∙ 0.2 )+ ( 0.8807970779779 ∙ 0.3) + ( 0.826353352981 ∙ 0.4 ) + h 21=1.2907765872788 h 21=h 21−U 21

h 21=1.2907765872788−0.1 h 21=1.1907765872788 h 22=(h 11 ∙ WF 12 ) +( h 12 ∙ WF 22 )+ ( h 13 ∙ WF 33) + ( h 14 ∙WF 42 ) + ( h15 ∙WF 52 ) + ( h16 ∙WF 62 )

h 22=(0.768524783499 ∙ 0.2 ) +( 0.8320183851339 ∙ 0.3 ) +( 0.8807970779779 ∙ 0.4) + ( 0.826353352981 ∙ 0.5 ) + h 22=1.385832891167 h 22=h 22−U 22

h 22=1.385832891167 −0.2 h 22=1.185832891167 h 23=(h 11 ∙WF 13 ) +( h 12 ∙ WF 23 ) +( h 13 ∙ WF 33) + ( h 14 ∙ WF 43 ) + ( h 15 ∙ WF 53) + ( h 16 ∙ WF 63 )

h 23=(0.768524783499 ∙ 0.3 ) +( 0.8320183851339 ∙ 0.4 ) + ( 0.8807970779779 ∙ 0.5) + ( 0.826353352981 ∙ 0.1 ) + h 23=1.4501864204465 h 23=h 23−U 23

h 23=1.4501864204465− 0.3 h 23=1.1501864204465 h 24 =( h 11 ∙ WF 14 )+ ( h 12 ∙ WF 24 ) + (h 13 ∙WF 34 ) +( h1 4 ∙ WF 44 ) +( h15 ∙WF 54 )+ (h 16 ∙ WF 64 )

h 24 =( 0.768524783499 ∙ 0.4 )+ (0.8320183851339 ∙ 0.5 ) + ( 0.8807970779779 ∙ 0.1) + ( 0.826353352981 ∙ 0.2 ) + h 24 =1.4873180872276 h 24 =h 24−U 24

h 24 =1.4873180872276−0.4 h 24 =1.0873180872276 h 25=(h 11 ∙WF 15 ) +( h 12 ∙ WF 25 ) +( h 13 ∙ WF 35) + ( h 14 ∙ WF 45 ) + ( h 15 ∙ WF 55) + ( h 16 ∙ WF 65 )

h 25=(0.768524783499 ∙ 0.5 ) +( 0.8320183851339 ∙ 0.1 ) +( 0.8807970779779 ∙ 0.2 ) + ( 0.826353352981 ∙ 0.3) + h 25=1.5488391004306 h 25=h 25−U 25

h 25=1.5488391004306− 0.5 h 25=1.0488391004306 

Aplicamos la función de activación (Simoidal)

h 21= h 21=

1 1+e−h 2

1

1 −1.1907765872788

1+e

h 21=0.7668799274735 h 22=

1 1+e−h 2

2

1 h 22 = −1.185832891167 1+ e h 23=0.7659949518747 h 23=

1 1+e−h 2

3

h 23=

1 −1.1501864204465

1+e

h 23=0.7595449657577 1 h 24 = −h 2 1+e

4

1 h 24 = −1.0873180872276 1+e h 24 =0.7478763636096 h 25= h 25=

1 1+e−h 2

5

1 −1.0488391004306

1+e

h 25=0.7405519122973

[ [∑ ( ñ

h 3k =∂ ∑ ( h 2 j ∙WG jk )−U 3k j =1 5

h 31=∂

j=1

h 2 j ∙WG jk ) −U 3k

] ]

k=1..o

k=4

h 31=( h21 ∙WG 11)+ ( h 22 ∙WG21 ) +( h23 ∙WG 31) + ( h 24 ∙WG 41) +( h 25 ∙ WG51) h 31=(0.7668799274735 ∙ 0.1 ) + ( 0.7659949518747 ∙ 0.2 ) +( 0.7595449657577 ∙ 0.3) +( 0.7478763636096 ∙ 0.4

h 31=0.8309562095232 h 31=h 31−U 3 1

h 31=0.8309562095232− 0.1 h 31=1.1907765872788 h 32=( h21 ∙WG 12)+ ( h22 ∙WG 22 ) + (h 23 ∙ WG32 ) + ( h 24 ∙WG 42 )+ (h 25 ∙ WG52 )

h 32=(0.7668799274735 ∙ 0.2 ) + ( 0.7659949518747 ∙ 0.3 ) +( 0.7595449657577 ∙ 0.4) +( 0.7478763636096 ∙ 0.1 h 32=0.9098904761806 h 32=h 32 −U 3 2

h 32=0.9098904761806 −0.2 h 32=0.7098904761806 h 33=( h21 ∙WG 13)+ ( h 22 ∙ WG23 ) + (h 23 ∙ WG33 ) + ( h2 4 ∙ WG43 )+ (h25 ∙ WG53 )

h 33=(0.7668799274735 ∙ 0.3 ) + ( 0.7659949518747 ∙ 0.4 ) + (0.7595449657577 ∙ 0.1) +( 0.7478763636096 ∙ 0.2 h 33=0.9098904761806 h 33=h 33 −U 33

h 33=0.9098904761806 −0.3 h 33=0.6098904761806 h 34 =( h 21 ∙ WG13) +( h 22 ∙WG23 ) + (h23 ∙ WG33 ) +( h 24 ∙WG 43 ) +(h 25 ∙ WG53 )

h 34 =( 0.7668799274735 ∙ 0.4 ) +( 0.7659949518747 ∙ 0.1 ) + (0.7595449657577 ∙ 0.2) +( 0.7478763636096 ∙ 0.3 h 34 =1.0558441333302 h 34 =h 34 −U 34

h 34 =1.0558441333302−0.4 h 34 =0.6558441333302 

Aplicamos la función de activación (Simoidal)

1 h 31 = −h 3 1+ e h 31=

1

1 −1.1907765872788

1+e

h 31=0.7668799274735

h 32=

1 1+e−h 3

2

h 32=

1 1+e−0.7098904761806

h 32=0.6703769585968

h 33=

1 1+e−h 3

3

1 h 33 = −0.6098904761806 1+e h 33=0.647915817812

1 h 34 = −h 3 1+ e

4

1 h 34 = −0.6558441333302 1+ e h 34 =0.6583262136984

[ [∑ ( o

S L =∂ ∑ ( h 3k ∙WSkL ) −Us L k=1 4

S L =∂

h 3k ∙WSkL ) −Us L

k=1

] ]

L =1.. p

L =2

S 1=( h 31 ∙WS 11 )+ (h 32 ∙ WS 21 ) + ( h 33 ∙ WS 31 ) +( h 34 ∙ WS 41)

S 1=( 1.1907765872788 ∙ 0.1) + ( 0.7098904761806 ∙ 0.3) + ( 0.6098904761806 ∙ 0.5) + ( 0.6558441333302 ∙ 0.7) S 1=1.0960809330035 S 1=S1−US 1

S 1=1.0960809330035−0.1 S 1=0.9960809330035 S 2=( h31 ∙WS 12 )+ (h 32 ∙WS 22 ) + ( h 33 ∙WS 32 ) +( h 3 4 ∙ WS 42)

S 2=( 1.1907765872788 ∙ 0.2) + ( 0.7098904761806 ∙ 0.4 )+ ( 0.6098904761806 ∙ 0.6 ) + ( 0.6558441333302 ∙ 0.8) S 2=1.4127211003005 S 2=S2−US2

S 2=1.4127211003005 −0.2 S 2=1.2127211003005 

Aplicamos la función de activación (Escalon)

Si S i ≥ 0 entonces yri =1 Si S i...


Similar Free PDFs