6 Inverse Laplace Transforms PDF

Title 6 Inverse Laplace Transforms
Course Engineering Mathematics
Institution Technological University Dublin
Pages 14
File Size 294.8 KB
File Type PDF
Total Downloads 46
Total Views 173

Summary

Inverse Laplace Transforms. This process is the reverse of finding the Laplace Transform of a function, f(t). Given the Laplace Transform F(s) , find the function f (t) , to which it belongs....


Description

DT022/2, DT024/2

Engineering Mathematics III

6 Inverse Laplace Transforms

This process is the reverse of finding the Laplace Transform of a function, f ( t) . Given the Laplace Transform F( s) , find the function f (t) , to which it belongs. L  f (t )  F ( s )



L1 F ( s )  f (t )



 k  L1  2  sin kt 2 s k 

For example,

Lsin kt 

k s  k2 2

Example 1

 3  L1  2   sin 3t s  9 

Example 2

 s  cos 4 L1  2 t  s  16 

Example 3

  1  2t L1  e s  2 

Example 4

 s  cosh 5 L1  2 t  s  25 

6 Inverse Laplace Transforms

1

2020 - 2021

DT022/2, DT024/2

Engineering Mathematics III

Example 5

6s     t sin 3 t L1 2 2  ( s  9)  Example 6

 5  L1  2   sinh 5t s  25 

Example 7

3  1  L1    3L1    3 1  3 s  s 

Further Exercises

Determine the inverse Laplace transform of the following functions, with reference to the tables supplied:

1.

 s  L1  2   s 16 

2.

 6  L1  2   s  36 

3.

 7  L1   s

4.

 1  L1   s 4

5.

  3  L1    s  5

6 Inverse Laplace Transforms

2

2020 - 2021

DT022/2, DT024/2

Engineering Mathematics III

6.

10 s    L1  2 2  ( s  25) 

7.

  3 L1   2 ( s  4)  9 

8.

 s2  36  L1  2 2  ( s  36) 

Answers to all of the exercises above can be found by reading the table of Laplace transforms in reverse.

We will now look at additional examples where further manipulations have to be carried before we can find the inverse transform.

Partial Fractions

What happens if we want to find  3s 1  L1  2  s  s6

We don’t have any standard transform for this expression. We can however separate the expression into partial fractions as follows:

3s  1 1 2       s s 6 s 2 s 3 2



 3s  1  1  1  1  2  L1  2  L   L   s  s  6  s  2  s  3 

 e 2 t  2e 3t

6 Inverse Laplace Transforms

3

2020 - 2021

DT022/2, DT024/2

Engineering Mathematics III

Rules for finding partial fractions

1.

Factorise the denominator into its prime factors.

Example

2.

1 1 becomes ( s  1)( s  2) s  3s  2 2

A linear factor, e.g., ( s  a) gives a partial fraction

A where A is a sa

constant to be determined.

Example

3.

A repeated factor (s  a )2 gives 

Example

4.

A B 1   (s  1)(s  2) s  1 s  2

A B 1 1 giving  goes to  s  2 (s  2)2 ( s  2)( s  2) s  4s  4 2

Similarly, (s  a )3 gives 

Example

1 1 giving goes to ( s  2)( s  2)( s  2) ( s  2)( s  4 s  4) A B C   2 s  2 (s  2) ( s  2)3

A quadratic factor

Example

A B C   2 s  a ( s  a) ( s  a)3

2



5.

A B  s  a ( s  a)2

1 Ps  Q gives 2 s  ps  q s  ps  q 2

15 s 2  s  2 A Bs  C  2 goes to 2 (s  5)(3s  4s  2) s  5 3s  4 s  2

6 Inverse Laplace Transforms

4

2020 - 2021

DT022/2, DT024/2

Engineering Mathematics III

Example 8

s  20    Find L 1  2   s 6 s8 

Solution



s  20 s  20 A B    s  6s  8 (s  2)(s  4) s  2 s  4 2

s  20 A( s  4)  B( s  2)  ( s  2)( s  4) ( s  2)( s  4)

Multiplying both sides by the denominator gives 

s  20  A(s  4)  B (s  2)

Substituting s  4 into both sides of the equation gives 4  20   16  A(0)  B (2)



B 8



A  9

Substituting s  2 gives 2  20   18  A( 2)  B(0)

So, returning to the original problem, we get 8  1   9   1  8   s  20  1   9 L1  2   L   L   L   s  6s  8  s  2 s 4  s 2  s  4  1  4t 2t 1  1   9L1    8L    8e  9e  s 2   s 4 

Exercise 9

s  19    2 t 5t Show that L 1  2   3e  2e  s  3 s  10  6 Inverse Laplace Transforms

5

2020 - 2021

DT022/2, DT024/2

Engineering Mathematics III

Exercise 10

 5s  1  4t 3 t Show that L1  2   3e  2e s s 12    

Exercise 11

 9 s 8  2t Show that L1  2   4 5 e s s 2   

Example 9

 s 2  15s  41  Determine L1  2  ( s  2)( s  3) 

Solution



s 2  15 s  41 A B C    2 ( s  2)( s  3) s  2 s  3 ( s  3) 2 s 2  15 s  41 A( s  3) 2  B( s  2)( s  3)  C ( s  2)  ( s  2)( s  3) 2 ( s  2)( s  3) 2

Multiplying both sides by the denominator gives s2  15s  41  A( s  3)2  B( s  2)( s  3)  C ( s  2)

We will choose suitable values of s to give us values of A, B and C Substituting s  3 into both sides of the equation gives 5  A(0)2  B (5)(0)  C (5)



C 1

Similarly, Substituting s  2 gives

6 Inverse Laplace Transforms

6

2020 - 2021

DT022/2, DT024/2

Engineering Mathematics III

75  A(5)  B (0)( 5)  C (0)



2

A3

Finally substituting s  0 into both sides of the equation gives 41  A(3)2  B(2)( 3)  C (2)

41  9 A  6B  2C

Since A  3 and C  1 , B can be calculated as follows: 41  9(3)  6 B  2(1)

So

41  27  2   6B



B  2

 s2  15 s 41  1  3 1  2 L1  L    2  2  ( s  2)( s  3)   s  2 s  3 ( s  3) 

3e 2t  2e3t  te3t

Exercise 12

 4s2  5s  6  t Show that L1    3e  cos 2t  3sin 2t 2 s s ( 1)( 4)    

Even Further Exercises

Determine the inverse Laplace transform of the following functions:

1.

1 L1   s

2.

1  4 L   s

3.

7 L1   s

6 Inverse Laplace Transforms

7

2020 - 2021

DT022/2, DT024/2

Engineering Mathematics III

4.

 s  L1  2   s  25 

5.

 s  L1  2  s  16 

6.

 3  L1  2  s  9 

7.

 20  L1  2   s  16 

8.

 16s  L1  2 2   ( s  64) 

9.

 10s  L1  2   ( s  25)2 

10.

 (s 2  49) L 1  2 2 ( s  49)

11.

  s 3 L1   2 ( s  3)  25 

12.

 s 4  L1  2   s  8 s  25 

13.

 s 2  L1  2   s  4 s  20 

14.

  5 L1  2 2  ( s  3)  5 

15.

4   L1  2   s  2 s  17 

  

6 Inverse Laplace Transforms

8

2020 - 2021

DT022/2, DT024/2

16.

12   L1  2   s  4 s  13 

17.

15   L1  2   s  8 s  25 

18.

6   L1  2   s  10 s  29 

19.

3   L1  2   s  4 s  13 

20.

  s2  25 L 1  4  2  s  50 s  625 

21.

 5s  1  L1  2  s  s  12 

22.

 3s  1  L1  2   s  s 6 

23.

 s  11  L1  2   s  s 2 

24.

 9s  8  L1  2  s  2 s 

25.

 4 s 1  L1  2   s  7 s 6 

26.

 4s  34  L1  2   s  2 s 8 

27.

 3s  1  L1  2   s  3 s 2 

28.

1  5s  4  L  2  s  2 s 

29.

 2 s 8  L1  2   s  5 s 6 

6 Inverse Laplace Transforms

Engineering Mathematics III

9

2020 - 2021

DT022/2, DT024/2

Engineering Mathematics III

Answers to Even Further Exercises

1.

 1 L 1   1 s 

2.

 4  1 L1    4.L1    4  1  4 s   s

3.

7  1  L1    7.L1    7 s  s 

4.

s  s  1  L1  2  L  2 2  s  25  s 5

   cos5 t 

5.

 s   s  L 1  2 L1  2  2  s  16  s  4

   cos 4t 

6.

3   3  1   sin 3 t L1  2  L  2 2  s 9 s 3 

7.

 20   1  5 4 L1  2  L  2 2  s  16  s  4

8.

 16s  L1  2   t sin 8t  (s  64)2 

9.

 10s  L1  2  t sin 5t 2   (s  25) 

10.

2  1  (s  49) L  2 2 (s  49)

11.

  s 3 3t L1   e cos 5t 2 (s  3)  25 

   5sin 4 t 

   t cos 7 t 

6 Inverse Laplace Transforms

10

2020 - 2021

DT022/2, DT024/2

Engineering Mathematics III

12.

 s 4  4t L1  2  e cos 3 t s  8 s  25 

13.

 s 2 L1  2 s  4 s  20

14.

  5 L1   e3 t sin 5t 2 2  s ( 3) 5    

15.

4  L1  2 s  2 s  17

 t 4  1    L  ( s 1) 2 4 2   e sin 4t     

16.

12  L1  2 s  4 s  13

 4 3  1  2t   L ( s 2) 2 3 2   4e sin 3t     

17.

 5 3  15   L1  2  L1   5 e4 t sin 3 t  2 2   s  8 s 25 ( s 4)  3 

18.

6  L1  2 s  10 s  29

19.

3  L1  2 s  4 s  13

20.

   1  s2  25  s2  25 L 1  4 L  2    t cos 5 t 2 2 ( s  25)  s  50 s  625 

21.

 5s  1 L1  2 s  s  12

 2t   e cos 4t

 3 2  1  5 t   L  ( s 5)2 22   3e sin 2 t     

 2t 3  1    L ( s 2) 2 3 2   e sin 3t     

5s  1  B   1  1  A   L  ( s 3)( s 4)   L  s 3  s 4       5s  1  A(s  4)  B( s  3)

Solve or A and B: s  4 :

21  B ( 7)

 B 3

s  3:

14  A(7)

 A 2

3 1 2  L  s  3 s  4

 3t  4t   2 e  3e 

6 Inverse Laplace Transforms

11

2020 - 2021

DT022/2, DT024/2

22.

Engineering Mathematics III

B   3s  1  1  A L1  2 L    s s 2  3  s  s  6   3s  1  A(s  3)  B ( s  2)

Solve or A and B: s  2 :

5  A(5) 

A 1

s  3:

10  B(5)

B2



2   2t  3s  1   1  1 L 1  2 L    e  2 e 3t  2 s s  3  s  s  6  

23.

 s  11 L1  2 s  s  2

24.

4 5  1  9s  8  2t  L1   L  2    4  5e s  2 s  s s  2 

25.

 4s1 L1  2 s  7 s  6

1   1  5 s  1  1  5 6 t t   L  ( s  6)( s 1)   L  s  6  s 1   5 e  e     

26.

 4s  34 L1  2 s  2 s  8

B   1  4 s  34  1  A   L  ( s 2)( s 4)   L  s 2  s 4          

  1  4  3   t  2t  L s  1 s  2  4e 3e   

4s  34  A(s  4)  B ( s  2)

Solve or A and B: s  4 s2

18  A(0)  B (6)  B  3 42  A(6)  B (0)  A  7

3  7 L 1   s  2 s  4

27.

 3s 1 L1  2 s  3 s  2

  4t 2t  7 e  3e 

B   1  3s 1  1  A  L  ( s  1)( s  2)   L  s 1  s  2      

Solve or A and B: s  2

3s  1  A(s  2)  B (s  1)

5  A(0)  B ( 1)  B  5

6 Inverse Laplace Transforms

12

2020 - 2021

DT022/2, DT024/2 s  1

Engineering Mathematics III

2  A(1)  B (0) 

A 2

 2  5    t   2t 5e L 1   2e s  1 s  2 

28.

B   5s  4  1  5 s  4  1  A L1  2   L  s( s  2)   L  s  s  2  s  2 s      5 s  4  A( s  2)  Bs

Solve or A and B: s2

6  A (0) 2B

s  0:

 4   2A

 B 3

 A2

3  2 2t L 1     2  3e s s  2 

29.

 2 s 8 L1  2 s  5 s  6

 1  A B   1  2 s  8   L  ( s 3)( s 2)   L  s 3  s 2           2s  8  A(s  2)  B( s  3)

Solve or A and B: s  2:

4  (1)B  B  4

s  3:

 2  A (1)  A  2

4  2 L 1   s  3 s  2

 2t 3t   4 e  2 e

6 Inverse Laplace Transforms

13

2020 - 2021

DT022/2, DT024/2

Engineering Mathematics III

The cover up rule

This method only works when the denominator has non repeated linear factors. Example

F (s ) 

9s  8 s 2  2s

has partial fractions of the form

A B  s s 2

Using the ‘cover up’ rule, the constant A, the coefficient of

1 is found by temporarily s

covering up the factor s in the denominator of F ( s ) and finding the limiting value of what remains when s (the factor covered up) tends to zero.

So

 9 s 8  A  lim   4 s 0  s 2 

Similarly, B is obtained by covering up the factor ( s 2) . In this case, (s  2) goes to zero if s  2 .

Thus

 9 s 8  B  lim   5 s 2  s 



F (s ) 

9 s 8 4 5   2 s  2s s s  2

6 Inverse Laplace Transforms

14

2020 - 2021...


Similar Free PDFs