Electronica 10 edicion, Boylestad PDF

Title Electronica 10 edicion, Boylestad
Author G. Ruiz Alvarez
Pages 914
File Size 195.1 MB
File Type PDF
Total Downloads 446
Total Views 605

Summary

Portada Boylestad DAN.qxd 11/5/09 17:15 Page 1 DÉCIMA EDICIÓN Electrónica: teoría de Electrónica: circuitos y dispositivos electrónicos BOYLESTAD • NASHELSKY BOYLESTAD NASHELSKY teoría de circuitos DÉCIMA EDICIÓN y dispositivos electrónicos y dispositivos electrónicos Electrónica: teoría de circuito...


Description

Accelerat ing t he world's research.

Electronica 10 edicion, Boylestad Guillermo Ruiz Alvarez

Related papers

Download a PDF Pack of t he best relat ed papers 

Elect rónica: t eoría de circuit os y disposit ivos elect rónicos Juan Velazquez BOYLESTAD @BULLET NASHELSKY CRIST IAN CORT ES OBANDO DOC 20190812 WA juan miguel machiavello

Portada Boylestad DAN.qxd

11/5/09

17:15

Page 1

DÉCIMA EDICIÓN

Electrónica: teoría de circuitos y dispositivos electrónicos BOYLESTAD • NASHELSKY

BOYLESTAD NASHELSKY

DÉCIMA EDICIÓN

• Diodos semiconductores • Transistores de unión bipolar • Polarización de CD de los BJT • Análisis de ca de un BJT • Transistores de efecto de campo • Polarización de los FET

• Amplificadores operacionales • Amplificadores de potencia • Circuitos integrados analógicos digitales • Realimentación y circuitos osciladores • Fuentes de alimentación (reguladores de voltaje) • Dispositivos pnpn y de otros tipos

También se amplió y actualizó la cobertura de los siguientes temas clave: • Amplificadores operacionales • Circuitos integrados digitales • Estructuras de circuito integrado

• FET • BJT • LED

Electrónica: teoría de circuitos y dispositivos electrónicos, décima edición, contiene estas importantes características: • Un acercamiento a los sistemas que hará del lector un adepto de la aplicación de sistemas encapsulados • Énfasis en la solución de fallas, útil para una completa comprensión de situaciones reales • Aplicaciones prácticas que se resuelven mediante el uso de PSpice® y Multisim® • Extensos conjuntos de problemas y ejemplos actualizados para reforzar los conceptos básicos Para mayor información sobre este libro visite: www.pearsoneducacion.net/boylestad

Electrónica: teoría de circuitos y dispositivos electrónicos

Esta prestigiosa obra, ideal para un curso de nivel superior sobre dispositivos y circuitos activos, ha marcado la pauta durante más de tres décadas. Ahora en su décima edición, el texto conserva el mismo nivel de excelencia y ofrece la más completa y actualizada cobertura de todos los temas esenciales, entre los que se encuentran:

Electrónica: teoría de circuitos y dispositivos electrónicos

ISBN: 978-607-442-292-4

DÉCIMA EDICIÓN Visítenos en: www.pearsoneducacion.net

Prentice Hall

ROBERT L. BOYLESTAD LOUIS NASHELSKY

ECUACIONES SIGNIFICATIVAS 1 Diodos semiconductores W = QV, 1 eV = 1.6 * 10-19 J, ID = Is 1eVD>nVT - 12, VT = kT>q, TK = TC + 273°, k = 1.38 * 10-23 J/K, VK ⬵ 0.7 V 1Si2, VK ⬵ 0.3 V1Ge2, VK ⬵ 1.2 V 1GaAs2, RD = VD>ID, rd = 26 mV>ID, rprom = ¢Vd>¢Id ƒ pto. a pto. , PD = VD ID, TC = 1¢VZ >VZ2>1T1 - T02 * 100%>°C 2 Aplicaciones del diodo Silicio: VK ⬵ 0.7 V, germanio: VK ⬵ 0.3 V, GaAs: VK ⬵ 1.2 V; media onda: Vcd = 0.318Vm; onda completa: Vcd = 0.636Vm 3 Transistores de unión bipolar IE = IC + IB, IC = ICmayoritario + ICOminoritario , IC ⬵ IE, VBE = 0.7 V, acd = IC>IE, IC = aIE + ICBO, aca = ¢IC>¢IE, ICEO = ICBO>11 - a2, b cd = IC>IB, b ca = ¢IC>¢IB, a = b>1b + 12, b = a>11 - a2, IC = bIB, IE = 1b + 12IB, PCmáx = VCEIC 4 Polarización de cd de los BJT En general: VBE = 0.7 V, IC ⬵ IE , IC = bIB; polarización fija: IB = 1VCC - VBE2>RB,VCE = VCC - ICRC, ICsat = VCC>RC; estabilizado por el emisor: IB = 1VCC - VBE2>1RB + 1b + 12RE2, Ri = 1b + 12RE , VCE = VCC - IC1RC + RE2, ICsat = VCC>1RC + RE2; divisor de voltaje: exacto: RTh = R1 7R2, ETh = R2VCC>1R1 + R22, IB = 1ETh - VBE2>1RTh + 1b + 12RE2, VCE = VCC - IC1RC + RE2, aproximado: bRE  10R2, VB = R2VCC>1R1 + R22, VE = VB - VBE, IC ⬵ IE = VE>RE; realimentación de voltaje: IB = 1VCC - VBE2>1RB + b1RC + RE22; base común: IB = 1VEE - VBE2>RE; transistores de conmutación: tencendido = tr + td , tapagado = ts + tf ; estabilidad: S1ICO2 = ¢IC>¢ICO; polarización fija: S1ICO2 = b + 1; polarización de emisor: S1ICO2 = 1b + 1211 + RB>RE2>11 + b + RB >RE2; divisor de voltaje: S1ICO2 = 1b + 1211 + RTh>RE2>11 + b + RTh>RE2; polarización por realimentación: S1ICO2 = 1b + 1211 + RB>RC2>11 + b + RB>RC2, S1VBE2 = ¢IC>¢VBE; polarización fija: S1VBE2 = - b>RB; polarización de emisor: S1VBE2 = - b>1RB + 1b + 12RE2; divisor de voltaje: S1VBE2 = - b>1RTh + 1b + 12RE2; polarización por realimentación: S1VBE2 = - b>1RB + 1b + 12RC2, S1b2 = ¢IC>¢b; polarización fija: S1b2 = IC1>b 1; polarización de emisor: S1b2 = IC111 + RB>RE2> 1b 111 + b 2 + RB>RE22; divisor de voltaje: S1b2 = IC111 + RTh>RE2>1b 111 + b 2 + RTh>RE22; polarización por realimentación: S1b2 = IC111 + RB>RC2>1b 111 + b 2 + RB>RC22, ¢IC = S1ICO2 ¢ICO + S1VBE2 ¢VBE + S1b2 ¢b 5 Análisis de ca de un BJT re = 26 mV>IE; CE polarización fija: Zi ⬵ bre, Zo ⬵ RC, Av = -RC>re; polarización de divisor de voltaje: Zi = R1 7 R2 7 bre, Zo ⬵ RC, Av = -RC>re; CE polarización de emisor: Zi ⬵ RB 7 bRE, Zo ⬵ RC, Av ⬵ -RC>RE; emisor seguidor: Zi ⬵ RB 7 bRE, Zo ⬵ re, Av ⬵ 1; base común: Zi ⬵ RE 7re, Zo ⬵ RC, Av ⬵ RC>re; realimentación del colector: Zi ⬵ re>11>b + RC>RF2, Zo ⬵ RC 7RF, Av = -RC>re; realimentación de cd del colector: Zi ⬵ RF1 7 bre, Zo ⬵ RC 7 RF2, Av = -1RF2 7 RC2>re; efecto de la impedancia de carga: Av = RLAvNL>1RL + Ro2, Ai = -Av Zi>RL; efecto de la impedancia de la fuente: Vi = RiVs>1Ri + Rs2, Avs = Ri AvNL >1Ri + Rs2, Is = Vs>1Rs + Ri2; efecto combinado de la carga y la impedancia de la fuente: Av = RLAv NL >1RL + Ro2, Avs = 1Ri>1Ri + Rs221RL >1RL + Ro22AvNL, Ai = -Av Ri>RL, Ais = -Avs1Rs + Ri2>RL; conexión cascodo: Av = Av1Av2; conexión de Darlington: b D = b 1 b 2; configuración en emisor seguidor: IB = 1VCC - VBE2>1RB + b DRE2, IC ⬵ IE ⬵ b DIB, Zi = RB||b 1 b 2RE, Ai = b DRB>1RB + b DRE), Av ⬵ 1, Zo = re1>b 2 + re2; configuración de amplificador básica: Zi = R1||R2||Zi , Zi  = b 11re1 + b 2re22, Ai = b D1R1||R22>1R1||R2 + Zi 2, Av = b DRC>Zi , Zo = RC||ro2; par de realimentación: IB1 = 1VCC - VBE12>1RB + b 1 b 2RC2, Zi = RB||Zi , Zi  = b 1re1 + b 1 b 2RC, Ai = - b 1 b 2RB>1RB + b 1 b 2RC2 Av = b 2RC>1re + b 2RC2 ⬵ 1, Zo ⬵ re1>b 2. 6 Transistores de efecto de campo IG = 0 A, ID = IDSS11 - VGS>VP22, ID = IS , VGS = VP 11 - 2ID>IDSS2, ID = IDSS>4 1si VGS = VP>22, ID = IDSS>2 1si VGS ⬵ 0.3 VP2, PD = VDSID , rd = ro>11 - VGS>VP22; MOSFET: ID = k1VGS - VT22, k = ID1encendido2 >1VGS1encendido2 - VT22 7 Polarización de los FET Polarización fija: VGS = -VGG, VDS = VDD - IDRD; autopolarización: VGS = -IDRS, VDS = VDD - ID1RS + RD2, VS = IDRS; divisor de voltaje: VG = R2VDD>1R1 + R22, VGS = VG - ID RS, VDS = VDD - ID1RD + RS2; configuración en compuerta común: VGS = VSS - IDRS, VDS = VDD + VSS - ID1RD + RS2; caso especial: VGSQ = OV: IIQ = IDSS, VDS = VDD - IDRD, VD = VDS, VS = 0 V. MOSFET tipo enriquecimiento: ID = k1VGS - VGS1Th222, k = ID1encendido2 >1VGS1encendido2 - VGS1Th222; polarización por realimentación: VDS = VGS, VGS = VDD - IDRD; divisor de voltaje: VG = R2VDD>1R1 + R22, VGS = VG - IDRS; curva universal: m = ƒ VP ƒ >IDSSRS, M = m * VG> ƒ VP ƒ ,VG = R2VDD>1R1 + R22 8 Amplificadores con FET gm = yfs = ¢ID>¢VGS, gm0 = 2IDSS > ƒVP ƒ, gm = gm011 - VGS>VP2, gm = gm0 1ID>IDSS, rd = 1>yos = ¢VDS>¢ID ƒ VGS = constante ; polarización fija: Zi = RG, Zo ⬵ RD, Av = -gmRD; autopolarización (RS con puenteo): Zi = RG, Zo ⬵ RD, Av = -gmRD; autopolarización (RS sin puenteo): Zi = RG, Zo = RD, Av ⬵ -gmRD>11 + gmRs2; polarización de divisor de voltaje: Zi = R1 7 R2, Zo = RD, Av = -gmRD; fuente seguidor: Zi = RG, Zo = RS 71>gm , Av ⬵ gmRS>11 + gmRS2; compuerta común: Zi = RS 71>gm, Zo ⬵ RD, Av = gmRD; MOSFET tipo enriquecimiento: gm = 2k1VGSQ - VGS1Th22; configuración por realimentación del drenaje: Zi ⬵ RF>11 + gmRD2, Zo ⬵ RD, Av ⬵ -gmRD; polarización por medio del divisor de voltaje: Zi = R1 7 R2, Zo ⬵ RD, Av ⬵ -gmRD.

Respuesta en frecuencia de transistores BJT y FET logea = 2.3 log10a, log101 = 0, log10 a>b = log10 a - log10 b, log101>b = -log10b, log10ab = log10 a + log10 b, GdB = 10 log10 P2>P1, GdBm = 10 log10 P2>1 mWƒ 600 Æ , GdB = 20 log10 V2>V1, GdBT = GdB1 + GdB2 + Á # + GdBn

9

PoHPF = 0.5Pomed , BW = f1 - f2; baja frecuencia: fLS = 1>2p1Rs + Ri2Cs, fLC = 1>2p1Ro + RL2CC, fLE = 1>2pR eCE, Re = RE 71R¿s>b + re2, R¿s = Rs 7R1 7 R2, FET: fLG = 1>2p1Rsig + Ri2CG, fLC = 1>2p1Ro + RL2CC , fLS = 1>2pReqCS,

Req = RS 71>gm1rd ⬵

q

Æ2; efecto Miller: CMi = 11 - Av2Cf , CMo = 11 - 1>Av2Cf ; alta frecuencia (BJT): fHi = 1>2pRThi Ci,

RThi = Rs 7R1 7 R2 7 Ri, Ci = Cwi + Cbe + 11 - Av2Cbc, fHo = 1>2pRThoCo, RTho = RC 7 RL 7ro, Co = CWo + Cce + CMo, fb ⬵ 1>2pb med re1Cbe + Cbc2, fT = b med fb; FET: fHi = 1>2pRThiCi, RThi = Rsig 7 RG, Ci = CWi + Cgs + CMi, CMi = (1 - Av)Cgd fHo = 1>2pRThoCo, RTho = RD 7 RL 7 rd, Co = CWo + Cds + CMo; CMO = 11 - 1>Av2Cgd; múltiples etapas: f1¿ = f1> 221>n - 1, f 2¿ = 1221>n - 12f2; prueba de onda cuadrada: fHi = 0.35>t r, % Inclinación = %P = 11V - V¿2>V2 * 100%, fLo = 1P>p2fs 10 Amplificadores operacionales CMRR = Ad >Ac; CMRR1log2 = 20 log101Ad >Ac2; Multiplicador de ganancia constante: Vo >V1 = -Rf >R1; amplificador no inversor: Vo >V1 = 1 + Rf >R1; seguidor unitario: Vo = V1; amplificador sumador: Vo = - 31Rf>R12V1 + 1Rf>R22V2 + 1Rf>R32V34; integrador: vo1t2 = - 11>R1C12 1v1dt 11 Aplicaciones del amplificador operacional Multiplicador de ganancia constante: A = - Rf>R1; no inversor: A = 1 + Rf>R1: sumador de voltaje: Vo = - 31Rf>R12V1 + 1Rf>R22V2 + 1Rf>R32V34; filtro activo pasoaltas: foL = 1>2pR1C1; filtro activo pasobajas: foH = 1>2pR1C1

12 Amplificadores de potencia Entrada de potencia: Pi = VCCICQ 2 Salida de potencia: Po = VCEIC = IC2RC = VCE >RC rms 2 2 >12RC2 pico = VCEIC>2 = 1IC>22RC = VCE 2 2 >18RC2 pico a pico = VCEIC>8 = 1IC>82RC = VCE eficiencia: %h = 1Po>Pi2 * 100%; eficiencia máxima: Clase A, alimentado en serie = 25%; transformador acoplado clase A = 50%; push-pull, clase B = 78.5%; relación de transformación: V2>V1 = N2>N1 = I1>I2, R2 = 1N2>N122R1; salida de potencia: Po = 31VCE máx - VCE mín 2 1IC máx - IC mín 24>8; amplificador de potencia clase B: Pi = VCC312>p2Ipico 4; Po = VL21pico 2>12RL2; %h = 1p>423VL1pico 2>VCC4 * 100%; 2 2 2 PQ = P2Q>2 = 1Pi - Po2>2; Po máxima = VCC >2RL; Pi máxima = 2VCC >pRL; P2Q máxima = 2VCC >p 2RL; % de distorsión armónica 2 2 2 Á total (%THD) = 2D2 + D3 + D4 + * 100%; disipador de calor: TJ = PDuJA + TA, uJA = 40°C/W (aire libre); PD = 1TJ - TA2>1uJC + uCS + uSA2 13 Circuitos integrados digitales líneales Red en configuración de escalera: Vo = 31D0 * 20 + D1 * 21 + D2 * 22 + Á + Dn * 2n2>2n4Vref; 555 oscilador: f = 1.441RA + 2RB2C; 555 monoestable: Talta = 1.1RAC; VCO: fo = 12>R1C1231V + - VC2>V +4; malla de enganche de fase (PLL): fo = 0.3>R1C1, fL = ; 8fo>V, fC = ;11>2p222pfL >13.6 * 1032C2 14 Realimentación y circuitos osciladores Af = A>11 + bA2; realimentación en serie: Zif = Zi11 + bA2; realimentación en derivación; Zif = Zi>11 + bA2; realimentación de voltaje: Zof = Zo>11 + bA2; realimentación de corriente; Zof = Zo11 + bA2; estabilidad de la ganancia: dAf>Af = 1>1ƒ1 + bAƒ21dA>A2; oscilador; bA = 1; corrimiento de fase: f = 1>2pRC16, b = 1>29, A 7 29; desplazamiento de fase de FET: ƒAƒ = gm RL, RL = RDrd>1RD + rd2; desfasamiento de transistor: f = 11>2pRC231> 26 + 41RC>R24, hfe 7 23 + 291RC>R2 + 41R>RC2; Puente de Wien: R3>R4 = R1>R2 + C2>C1, fo = 1>2p1R1C1R2C2; sintonizado: fo = 1>2p 1LCec , Cec = C1C2>1C1 + C22, Hartley: Lec = L1 + L2 + 2M, fo = 1>2p 1Lec C 15 Fuentes de alimentación (reguladores de voltaje) Filtros: r = Vr1rms2>Vcd * 100%, V.R. = 1VNL - VFL2>VFL * 100%, Vcd = Vm - Vr1p-p2>2, Vr1rms2 = Vr1p-p2>213, Vr1rms2 ⬵ 1Icd>41321Vcd>Vm2; onda completa, carga ligera Vr1rms2 = 2.4Icd>C, Vcd = Vm - 4.17Icd>C, r = 12.4IcdCVcd2 * 100% = 2.4>RLC * 100%, Ipico = T>T1 * Icd; RC filtro: V¿cd = RL Vcd>1R + RL2, XC = 2.653>C1media onda2, XC = 1.326>C 1Onda completa2, V¿r1rms2 = 1XC> 2R2 + X2C2; reguladores: IR = 1INL - IFL2>IFL * 100%, VL = VZ11 + R1>R22, Vo = Vref 11 + R2>R12 + IadjR2 16 Otros dispositivos de dos terminales Diodo varactor: CT = C102>11 + ƒVr>VT ƒ2n, TCC = 1¢C>Co1T1 - T022 * 100%; fotodiodo: W = hf, l = v>f, 1 lm = 1.496 * 10-10 W, 1 Å = 10-10 m, 1 fc = 1 lm>ft2 = 1.609 * 10-9 W>m2 17 Dispositivos pnpn y otros dispositivos Diac: VBR1 = VBR2 ; 0.1 VBR2 UJT: RBB = 1RB1 + RB22ƒ IE = 0 , VRB = hVBB ƒ IE = 0,h = RB1>1RB1 + RB22ƒ IE = 0 , 1 VP = hVBB + VD; fototransistor: IC ⬵ hfeIl; PUT: h = RB1>1RB1 + RB22,VP = hVBB + VD

Electrónica: Teoría de Circuitos y Dispositivos Electrónicos Décima edición

Robert L. Boylestad Louis Nashelsky TRADUCCIÓN

Rodolfo Navarro Salas Ingeniero Mecánico Universidad Nacional Autónoma de México REVISIÓN TÉCNICA

Francisco Rodríguez Ramírez Facultad de Ingeniería Universidad Nacional Autónoma de México

Prentice Hall

Datos de catalogación bibliográfica BOYLESTAD, ROBERT L. y NASHELSKY, LOUIS Electrónica: Teoría de Circuitos y Dispositivos Electrónicos PEARSON EDUCACIÓN, México, 2009 ISBN: 978-607-442-292-4 Área: Ingeniería Formato: 21 × 27 cm

Páginas: 912

Authorized translation from the English language edition, entitled Electronic devices and circuit theory, 10th edition, by Robert L. Boylestad and Louis Nashelsky published by Pearson Education, Inc., publishing as PRENTICE HALL, INC., Copyright ©2009. All rights reserved. ISBN 9780135026496 Traducción autorizada de la edición en idioma inglés, Electronic devices and circuit theory, 10ª. edición por Robert L. Boylestad y Louis Nashelsky, publicada por Pearson Education, Inc., publicada como PRENTICE HALL INC., Copyright © 2009. Todos los derechos reservados. Esta edición en español es la única autorizada. Edición en español Editor: Editor de desarrollo: Supervisor de producción:

Luis Miguel Cruz Castillo e-mail: [email protected] Bernardino Gutiérrez Hernández Rodrigo Romero Villalobos

DÉCIMA EDICIÓN VERSIÓN IMPRESA, 2009 DÉCIMA EDICIÓN E-BOOK, 2009 D.R. © 2009 por Pearson Educación de México, S.A. de C.V. Atlacomulco 500-5o. piso Col. Industrial Atoto 53519, Naucalpan de Juárez, Estado de México Cámara Nacional de la Industria Editorial Mexicana. Reg. núm. 1031. Prentice Hall es una marca registrada de Pearson Educación de México, S.A. de C.V. Reservados todos los derechos. Ni la totalidad ni parte de esta publicación pueden reproducirse, registrarse o transmitirse, por un sistema de recuperación de información, en ninguna forma ni por ningún medio, sea electrónico, mecánico, fotoquímico, magnético o electroóptico, por fotocopia, grabación o cualquier otro, sin permiso previo por escrito del editor. El préstamo, alquiler o cualquier otra forma de cesión de uso de este ejemplar requerirá también la autorización del editor o de sus representantes. ISBN VERSIÓN IMPRESA 978-607-442-292-4 ISBN E-BOOK 978-607-442-329-7 Impreso en México. Printed in Mexico. 1 2 3 4 5 6 7 8 9 0 - 12 11 10 09

Prentice Hall es una marca de

www.pearsoneducacion.net

ISBN 978-607-442-292-4

DEDICATORIA

A Else Marie, Alison y Mark, Eric y Rachel, Stacey y Jonathan, y nuestras ocho nietas, Kelcy, Morgan, Codie, Samantha, Lindsey, Britt, Skylar y Aspen. A Katrin, Kira y Thomas, Larren y Patricia, y nuestros seis nietos, Justin, Brendan, Owen, Tyler, Colin y Dillon.

PREFACIO

La edición anterior de Electrónica: Teoría de Circuitos y Dispositivos Electrónicos requirió varios cambios significativos en cuanto a pedagogía y contenido. Esta edición fue más selectiva en las adecuaciones que se debían hacer. Los títulos de los capítulos no se modificaron y se agregó un número limitado de secciones nuevas. Los cambios se efectuaron sobre todo para mejorar la forma en que se presenta el material más importante y para mantener actualizado el contenido. Hubo varias configuraciones determinantes de BJT y FET que se debían tratar más a fondo, recalcando sus características terminales importantes. Este material adicional es la razón principal por la que se agregaron nuevas secciones al texto. Tales adiciones produjeron más ejemplos y una selección más amplia de los problemas. En esta edición se desarrollaron listas de objetivos para el material incluido en cada capítulo; además, al final de cada uno de ellos se incluye una lista de conclusiones, conceptos y ecuaciones importantes. Estos tres elementos resumen el material para una revisión y aplicación futuras. Se agregó una tabla de resumen al capítulo 4 de polarización de cd de los BJT, en concordancia con las provistas para el análisis de ca de los BJT y la investigación de ca y cd de los FET. Por otra parte, se utiliza el modelo re del transistor BJT en las primeras secciones de cada capítulo dedicadas al tema, relegando el modelo de parámetro híbrido a secciones posteriores, como si fuera una entidad aparte. De esta manera se puede analizar el material por separado sin afectar el flujo general del que utiliza el modelo re. El nivel de detalle provisto para el modelo de parámetros híbridos sigue siendo casi el mismo, aunque ahora aparece más adelante en el capítulo. En algunas áreas el contenido general en esencia no cambia, excepto por los comentarios adicionales y el reacomodo del texto. Por ejemplo, el apartado de respuesta en frecuencia (capítulo 9) ahora contiene comentarios adicionales sobre el uso de logaritmos y la realización del proceso de normalización, así como la sección Análisis por computadora que se ha movido a otra parte del texto. El análisis de las configuraciones del par Darlington y realimentación se reescribió en su totalidad para que compaginara mejor con las primeras secciones del mismo capítulo. La cobertura de amplificadores operacionales y redes digitales se reescribió por completo para mejorar su presentación y para actualizarlos. Como en cada nueva edición, las hojas de componentes y datos incluidas en las descripciones se actualizaron a las versiones más recientes. Las fotografías y el material gráfico se reemplazaron, y se cambiaron los datos en los ejemplos para ajustarlos a las tendencias actuales. Los tres paquetes de software utilizados en ediciones anteriores del libro aparecen de nuevo en esta edición, pero con las versiones más recientes. Los detalles provistos con Mathcad 14, Cadence OrCAD 15.7 y Multisim 10, son iguales de nueva cuenta, así que no es necesario consultar otras referencias para aplicarlos a las configuraciones incluidas en el texto. Los comentarios recibidos de los usuarios actuales sugieren que la cobertura de este software fue una importante adición al texto hace algunos años. Nos complace el muy alto nivel de precisión del texto después de todas estas ediciones; en la última hubo muy pocos errores de impresión y de contenido que corregir. Entendemos cuán frustrantes pueden ser los errores en el texto o en la lista de soluciones para un estudiante que por primera vez maneja el material. Todas las sugerencias, críticas o correcciones son bienvenidas. Prometemos responder a todas ellas.

vii

viii

PREFACIO

CARACTERÍSTICAS SOBRESALIENTES • Método para abordar los sistemas. Como en la edición anterior, nos esforzamos por mejorar el material que presenta el concepto de ingeniería de sistemas. Para el análisis de ca, la diferencia entre la ganancia con carga y sin carga se resaltó con ejemplos que muestran cómo afectan la ganancia y las características de un sistema. Hay secciones enteras que se conservan para demostrar el impacto de la fuente y la resistencia de la carga en la respuesta del sistema, aunque ahora el material es una parte integral del capítulo de análisis de ca del dispositivo que se esté estudiando. • Presentación visual. Este texto representa un esfuerzo concertado para asegurar que los enunciados y conclusiones importantes resalten. Casi al final de cada capítulo aparecen resúmenes y listas de ecuaciones para revisión y estudio. La figura P-1 muestra un ejemplo de resumen del capítulo, así como una lista de ecuaciones.

8.18 RESUMEN Conclusiones y conceptos importantes



ANÁLISIS POR 523 COMPUTADORA

1. El parámetro de transconductancia gm está determinado por la relación del cambio de la c...


Similar Free PDFs