Gametogénesis - resumen de embriologia de langman y gametogenesis PDF

Title Gametogénesis - resumen de embriologia de langman y gametogenesis
Author Victor Vasquez Avalos
Course Anatomía Humana
Institution Universidad Autónoma Gabriel René Moreno
Pages 15
File Size 100.8 KB
File Type PDF
Total Downloads 4
Total Views 121

Summary

resumen de embriologia de langman y gametogenesis...


Description

Gametogénesis: transformación de las células germinales en gametos masculinos y femeninos. El desarrollo empieza con la fecundación, proceso mediante el cual el gameto masculino –el espermatozoidey el gameto femenino –el ovocito– se unen para producir un cigoto. Los gametos derivan de las células germinales primordiales (CGP) que se forman en el epiblasto durante la segunda semana, cruzan la línea primitiva durante la gastrulación y migran hacia la pared del saco vitelino. En la cuarta semana estas células comienzan a migrar del saco vitelino a las gónadas en desarrollo, donde llegan al final de la quinta semana. Las divisiones mitóticas aumentan el número de las células germinales durante la migración y también cuando llegan a la gónada. En preparación para la fecundación, las células experimentan la gametogénesis, proceso que incluye la meiosis para reducir la cantidad de cromosomas y la citodiferenciación para completar la maduración. TEORÍA CROMOSÓMICA DE LA HERENCIA. Ciertos genes en los cromosomas heredados del padre y de la madre determinan las características de un nuevo individuo. El ser humano tiene aproximadamente 23 000 genes en 46 cromosomas. Los genes de un mismo cromosoma tienden a heredarse juntos y por eso se les llama genes ligados. En las células somáticas los cromosomas aparecen agrupados

en 23 pares homólogos para producir el número diploide de 46. Hay 22 pares de cromosomas –los autosomas– y un par de cromosomas sexuales. Si el par sexual es XX, el individuo será genéticamente femenino; si el par es XY, será genéticamente masculino. Un cromosoma de cada par proviene del gameto materno u ovocito y uno del gameto paterno o espermatozoide. Así, pues, un gameto contiene un número haploide de 23 cromosomas y la unión de gametos durante la fecundación restablece el número diploide de 46. Mitosis. Mitosis es el proceso por medio del cual se divide una célula, para dar origen a dos células hijas genéticamente idénticas a la célula madre. Cada célula hija recibe el complemento entero de 46 cromosomas. Antes de iniciarse la mitosis, un cromosoma duplica su ADN. Durante esta fase los cromosomas son extremadamente largos, se difunden a lo largo del núcleo y no pueden reconocerse con el microscopio óptico. Al comenzar la mitosis, los cromosomas empiezan a enrollarse, contraerse y condensarse, procesos que marcan el inicio de la profase. Ahora cada cromosoma consta de dos subunidades paralelas: cromátidas, que se juntan en una región estrecha común a ambas llamada centrómero. A lo largo de la profase los cromosomas continúan condensándose, acortándose y engrosando, pero sólo durante la prometafase podemos identificar las cromátidas. Durante la metafase los cromosomas se alinean en el plano

ecuatorial y su estructura doble se vuelve visible. Todas están ancladas por microtúbulos que se extienden del centrómero al centriolo, formando el huso mitótico. Pronto el centrómero de cada cromosoma se divide, lo que da inicio a la anafase, acompañada por la migración de cromátidas a los polos opuestos del uso. Por último, durante la telofase los cromosomas se desenrollan y alargan, la envoltura nuclear se restablece y el citoplasma se divide. Las células hijas reciben la mitad del material cromosómico duplicado, así que conservan el mismo número de cromosomas que la célula madre. Meiosis. Meiosis es la división celular que tiene lugar en las células germinales para producir gametos masculinos y femeninos: espermatozoides y ovocitos (óvulos), respectivamente. La meiosis requiere dos divisiones celulares –meiosis I y meiosis II– para reducir el número de cromosomas al número haploide de 23. Igual que en la mitosis, las células germinales masculinas y femeninas (espermatocitos y ovocitos primarios) duplican su ADN al comenzar la meiosis I, de modo que cada uno de los 46 cromosomas se duplica en sus cromátidas hermanas. A diferencia de lo que ocurre en la mitosis, los cromosomas homólogos se alinean en pares, proceso conocido con el nombre de sinapsis. El emparejamiento es exacto y punto por punto, salvo la combinación XY. En seguida los pares homólogos se separan en dos células hijas, convirtiendo

así el número diploide en haploide. Poco después la meiosis II separa las cromátidas hermanas. Entonces cada gameto contendrá 23 cromosomas. Entrecruzamiento. Los entrecruzamientos, procesos críticos de la meiosis I, son el intercambio de segmentos de cromátidas entre cromosomas homólogos emparejados. Los segmentos se rompen intercambiándose como cromosomas homólogos individuales. A medida que se realiza la separación, los puntos de intercambio quedan unidos de manera temporal y constituyen una estructura parecida a una X: un quiasma. Los aproximadamente 30 a 40 entrecruzamientos (uno o dos por cromosoma) en cada división meiótica I son muy frecuentes entre genes lejanos en un cromosoma. Al terminar las divisiones meióticas: Aumenta la variabilidad genética mediante: el entrecruzamiento que redistribuye el material genético, la distribución aleatoria de cromosomas homólogos entre las células hijas. Cada célula germinal contiene un número haploide de cromosomas, con lo cual se restablece en la fecundación el número diploide de 46. Corpúsculos polares. También durante la meiosis un ovocito primario da origen a cuatro células hijas, cada una con 22 cromosomas más un cromosoma X. Sólo uno de ellos se transformará en un gameto maduro: el ovocito. Los tres restantes, los corpúsculos polares, reciben

poco citoplasma y degeneran en el desarrollo ulterior. De modo análogo, un espermatocito primario produce cuatro células hijas, con 22 cromosomas más un cromosoma X y dos con 22 cromosomas más un cromosoma Y. Pero los cuatro llegarán a ser gametos maduros a diferencia de lo que ocurre en la formación de ovocitos. CAMBIOS MORFOLÓGICOS DURANTE LA MADURACIÓN DE LOS GAMETOS. Ovogénesis. La ovogénesis es el proceso por medio del cual los ovogonios se diferencian para transformarse en ovocitos maduros. La maduración de los ovocitos empieza antes del nacimiento. Una vez que las células germinales primordiales llegan a la gónada de una mujer genéticamente femenina se diferencian en ovogonios. Pasan por varias divisiones mitóticas y al final del tercer mes ya se encuentran dispuestos en grupos rodeados por una capa de células epiteliales planas. A diferencia de los ovogonios que probablemente provengan de una sola célula, estas células epiteliales, llamadas células foliculares, se originan en el epitelio celómico que recubre al ovario. La mayoría de los ovogonios continúan dividiéndose por mitosis, pero algunos dejan de hacerlo en la profase de la meiosis I para formar los ovocitos primarios. Durante los siguientes meses el número de ovogonios aumenta rápidamente y al quinto mes del desarrollo prenatal el número total de las células germinales en los ovarios alcanza su nivel máximo: unos 7 millones. Entonces comienza la muerte celular, y muchos ovogonios junto con los ovocitos primarios degeneran volviéndose atrésicos. En el séptimo mes la

mayoría de los ovogonios degeneraron menos unos cuantos cercanos a la superficie. El resto de los ovocitos primarios que sobrevivieron ya iniciaron la profase de meiosis I y casi todos están rodeados individualmente por una capa de células epiteliales foliculares planas. Se da el nombre de folículo primordial al ovocito primario, lo mismo que a las células epiteliales planas circundantes. La maduración de los ovocitos continúa en la pubertad. Al acercarse el momento del parto los ovocitos primarios ya comenzaron la profase de la meiosis I, pero en vez de pasar a la metafase entran en la etapa de diploteno, fase de reposo durante la profase que se caracteriza por una red laxa de cromatina. Los ovocitos primarios permanecen en la profase y no concluyen su primera división meiótica antes de la pubertad. Esta fase de reposo es producida por el inhibidor de maduración de los ovocitos (IMO), pequeño péptido segregado por las células foliculares. Se estima que el número total de ovocitos al momento del nacimiento fluctúa entre 600 000 y 800 000. Durante la niñez, la mayor parte de ellos se vuelve atrésico, sólo aproximadamente 40 000 están presentes al comenzar la pubertad y menos de 500 ovularán, uno cada mes hasta la etapa de la menopausia. Se desconoce si la fase de diploteno es la más adecuada para proteger al ovocito contra los influjos ambientales. El hecho de que el riesgo de procrear hijos con anomalías cromosómicas se incremente conforme

aumenta la edad de la madre indica que los ovocitos primarios son vulnerables al daño a medida que van envejeciendo. En la pubertad se crea una reserva de folículos en crecimiento que se mantiene gracias al suministro de folículos primordiales. Cada mes empiezan a madurar algunos de los 15 a 20 seleccionados de la reserva. Varios de ellos mueren; otros comienzan a acumular líquido en un espacio denominado antro para comenzar la fase antral o vesicular. El líquido sigue acumulándose tanto que, inmediatamente antes de la ovulación, los folículos están muy edematosos y reciben el nombre de folículos vesiculares maduros (también conocidos como folículos de De Graaf). La fase antral es la más larga, mientras que la fase vesicular madura se prolonga alrededor de 37 horas antes de la ovulación. Cuando los folículos primordiales empiezan a crecer, las células foliculares circundantes pasan de planas a cuboidales, proliferando para producir un epitelio estratificado de células granulosas; a esta unidad se le da el nombre de folículo primario. Las células granulosas descansan sobre una membrana basal; ésta las separa del tejido conectivo circundante (células del estroma) que forma la teca folicular. Tanto las células granulosas como el ovocito segregan una capa de glucoproteínas sobre la superficie de éste, dando lugar a la zona pelúcida. Al seguir creciendo los folículos, la células de la teca folicular se organizan en una capa interna de células secretoras, la teca interna, y

en una cápsula fibrosa externa, la teca externa. Pequeñas prolongaciones digitiformes de las células foliculares se extienden a través de la zona pelúcida, intercalándose con microvellosidades de la membrana plasmática del ovocito. Estas prolongaciones son importantes para transportar materiales de las células foliculares al ovocito. Al proseguir el desarrollo, aparecen espacios llenos de líquido entre las células granulosas. La coalescencia de estos espacios da origen al antro y al folículo se le llama folículo vesicular o antral. Al principio el antro presenta forma de arco, aunque con el tiempo aumenta de tamaño. Las células granulosas que rodean el ovocito permanecen intactas, formando el cúmulo ovóforo. En la madurez el folículo vesicular maduro (de De Graaf) llega a medir 25 mm o más de diámetro. Lo rodea la teca interna que se compone de células con características de secreción de esteroides rica en vasos sanguíneos y de la teca externa que gradualmente se fusiona con el tejido conectivo del ovario. En cada ciclo ovárico varios folículos empiezan a desarrollarse pero generalmente sólo uno de ellos alcanza plena madurez. El resto degenera y se vuelve atrésico. Al madurar el folículo secundario, una descarga en la hormona luteinizante (LH) induce la fase de crecimiento preovulatorio. Al terminar la meiosis I se forman dos células hijas de diferente tamaño, cada una con 23 cromosomas de estructura doble. Una de ellas, el ovocito secundario,

recibe la mayor parte del citoplasma; la otra, el primer corpúsculo polar, prácticamente no recibe nada. Este corpúsculo se halla entre la zona pelúcida y la membrana celular del ovocito secundario en el espacio perivitelino. Entonces la célula entra en la meiosis II, sin embargo se detiene en la metafase unas 3 horas antes de la ovulación. La meiosis II se completa sólo si el ovocito queda fecundado; de lo contrario, la célula degenera aproximadamente 24 horas tras la ovulación. El primer corpúsculo polar puede experimentar una segunda división. La maduración de los espermatozoides comienza en la pubertad. La espermatogénesis, que empieza en la pubertad, incluye los mismos procesos con los cuales los espermatogonios se transforman en espermatozoides. En el momento del nacimiento, en los cordones testiculares de un varón las células germinales se reconocen como células grandes, pálidas y rodeadas por otras de soporte. Estas últimas, que provienen del epitelio celómico del testículo en la misma forma que las células foliculares, se convierten en células sustentaculares o de Sertoli. Poco antes de la pubertad los cordones sexuales adquieren una luz, transformándose en túbulos seminíferos. Aproximadamente al mismo tiempo las células germinales primordiales dan origen a las células precursoras de espermatogonios. A intervalos regulares emergen células de esta población para

formar espermatogonios de tipo A, cuya producción marca el inicio de la espermatogénesis. Las células de tipo A pasan por pocas divisiones mitóticas para constituir clones de células. La última división celular produce espermatogonios de tipo B, que luego se dividen formando espermatocitos primarios. Éstos entran entonces en una profase prolongada (22 días), acompañada de una completación rápida de la meiosis I y la producción de espermatocitos secundarios. Durante la segunda división meiótica éstos de inmediato empiezan a formar espermátidas haploides. Durante esta serie de procesos la citocinesis queda incompleta desde el momento en que las células de tipo A dejan la población de células hasta el surgimiento de espermátidas, de modo que las generaciones siguientes de células quedan unidas por puentes citoplasmáticos. Así pues, los descendientes de un solo espermatogonio de tipo A forman un clon de células germinales que mantienen contacto a lo largo de la diferenciación. Más aún, durante su desarrollo los espermatogonios y espermátidas permanecen en el interior de las cavidades profundas de las células de Sertoli. De esta manera las células de Sertoli sostienen y brindan protección a las células germinales, participan en su nutrición y colaboran en la liberación de los espermatozoides maduros. La espermatogénesis está regulada por la producción de la hormona luteinizante en la hipófisis. Esa hormona se une a receptores en las células de Leydig para estimular la producción de testosterona,

la cual a su vez se une a las células de Sertoli para promover la espermatogénesis. La hormona estimuladora de folículos (FSH) también es esencial porque, al unirse a las células de Sertoli, estimula la producción de líquido testicular y la síntesis de las proteínas receptoras de andrógeno intracelular. Espermiogénesis. Espermiogénesis es la serie de cambios que transforman las espermátidas en espermatozoides. Esos cambios incluyen: 1) la formación del acrosoma que cubre la mitad de la superficie nuclear y contiene enzimas para ayudar a penetrar el óvulo y sus capas circundantes durante la fecundación; 2) la condensación del núcleo; 3) la formación del cuello, la pieza intermedia y la cola; 4) el desprendimiento de la mayor parte del citoplasma como cuerpos residuales que son fagocitados por las células de Sertoli. En el ser humano un espermatogonio tarda en llegar a ser un espermatozoide maduro aproximadamente 74 días; cerca de 300 millones de espermatozoides se producen por día. Una vez formados por completo, los espermatozoides entran en la luz de los túbulos seminíferos. De allí son empujados hacia el epidídimo por elementos contráctiles situados en la pared de los túbulos seminíferos. Aunque al inicio tienen poca movilidad, alcanza su movilidad plena en el epidídimo. RESUMEN. Las células germinales primordiales (CGP) derivan

del epiblasto durante la gastrulación y migran hacia la pared del saco vitelino durante la cuarta semana y luego hacia la gónada indiferenciada, a la que llegan al final de la quinta semana. En preparación a la fecundación, tanto las células germinales masculinas como las femeninas experimentan gametogénesis, que incluye meiosis y citodiferenciación. Durante la meiosis I los cromosomas homólogos se emparejan e intercambian material genético; durante la meiosis II las células no replican su ADN, de manera que cada una recibe un número haploide de cromosomas y la mitad de la cantidad de ADN de una célula somática normal. En consecuencia, los gametos masculino y femenino maduros tienen 22 cromosomas más un cromosoma X o 22 cromosomas más un cromosoma Y, respectivamente. Los defectos congénitos pueden provenir de anomalías en el número o estructura del cromosoma, también de mutaciones en un solo gen. Cerca de 10% de los principales defectos son resultado de anomalías cromosómicas, mientras que 8% se derivan de una mutación génica. Las trisomías (un cromosoma extra) y las monosomías (pérdida de un cromosoma) ocurren durante la mitosis o meiosis. Durante esta última los cromosomas homólogos normalmente se emparejan para separarse después. Si no se separan (no disyunción), una célula recibe demasiados cromosomas y otra muy pocos. La incidencia de anomalías en el número de cromosomas aumenta con la edad de la madre, sobre todo con las de 35 años o mayores. Las

anomalías estructurales de los cromosomas incluyen deleciones (síndrome de maullido del gato) y microdeleciones. En estas últimas intervienen genes contiguos que pueden ocasionar defectos como el síndrome de Angelman (deleción materna, cromosoma 15q11-15q13) o el síndrome de PraderWilli (deleción paterna, 15q11-15q13). Estos síndromes dependen de que el material genético afectado se herede del padre o de la madre; por ello constituyen también un ejemplo de sellado. Las mutaciones genéticas pueden ser dominantes (basta que un gen de un par de alelos se vea afectado para producir una alteración) o recesivas (deben mutar ambos alelos del gen). Las mutaciones causantes de muchos defectos congénitos afectan a los genes que participan en el desarrollo embrionario normal. Las técnicas de diagnóstico con que se identifican las anomalías genéticas son la citogenética, con la cual se determina el número de cromosomas (ploidía), y las técnicas de bandeo metafásico de alta resolución, con las que se detectan deleciones pequeñas. En la hibridización con fluorescencia in situ (FISH) se emplean sondas fluorescentes de ADN para identificar ciertos cromosomas o regiones de los cromosomas para descubrir deleciones, translocaciones o ploidía. Las micromatrices utilizan pequeñas secuencias de ADN depositadas en portaobjetos como sondas para descubrir mutaciones y cambios en los niveles de expresión de algunos genes. La secuenciación del exoma estudia la región

codificadora de proteínas en el ADN (1% del ADN total; el exoma) para identificar las mutaciones y polimorfismos causantes de defectos congénitos y enfermedades. La técnica es más precisa, rápida y rentable que la secuenciación del genoma entero. En la mujer la maduración desde la célula germinal primitiva hasta el gameto maduro, llamado ovogénesis, comienza antes del nacimiento; en el varón recibe el nombre de espermatogénesis e inicia en la pubertad. En la mujer las células germinales primordiales producen ovogonios. Tras varias divisiones mitóticas algunos de ellos se detienen en la profase de la meiosis I para formar ovocitos primarios. En el séptimo mes muchos ovogonios se vuelven atrésicos y sólo los ovocitos primarios permanecen rodeados de una capa de células foliculares derivadas del epitelio celómico del ovario. Juntos forman el folículo primordial. En la pubertad, una reserva de folículos en crecimiento se recluta y se mantiene gracias a una fuente limitada de folículos primordiales. Así, pues, cada mes entre 15 y 20 folículos empiezan a crecer y al madurar transitan por tres fases: 1) primaria o preantral, 2) vesicular o antral y 3) vesicular madura o del folículo de De Graaf. El ovocito primario permanece en la profase de la primera división meiótica hasta que está maduro el folículo secundario. En este momento una descarga de la hormona luteinizante (LH) estimula el crecimiento preovulatorio: la meiosis I está completada; se forman el ovocito secundario y el corpúsculo polar. Entonces el ovocito

secundario se detiene en la metafase de la meiosis, aproximadamente 3 horas ant...


Similar Free PDFs