GRADE 11/12 Physical Science: Polarity of Molecules PDF

Title GRADE 11/12 Physical Science: Polarity of Molecules
Author Crimson
Course Criminal Law
Institution University of Pangasinan
Pages 54
File Size 3.2 MB
File Type PDF
Total Downloads 772
Total Views 842

Summary

Unit 5Polarity of MoleculesTable of ContentsTable of Contents 1 Introduction 3 Essential Questions 3 Review 4Lesson 5: Electronegativity 5 Objective 5 Warm-Up 5 Learn about It 5 Web Links 6 Check Your Understanding 6 Challenge Yourself 6 Lesson 5: Determining Polarity of Molecules 7 Objective 7 Warm...


Description

Unit 5

Polarity of Molecules Table of Contents  Table of Contents

1

Introduction

3

Essential Questions

3

Review

4

Lesson 5.1: Electronegativity Objective

5 5

Warm-Up Learn about It

5 5

Web Links Check Your Understanding

6 6

Challenge Yourself

6

Lesson 5.2: Determining Polarity of Molecules

7

Objective Warm-Up

7 7

Learn about It Worked Examples

7 7

Key Points Web Links

7 7

Check Your Understanding Challenge Yourself

8 8

Lesson 5.3: Properties of Molecules Based on Polarity

9

Objective Warm-Up

9 9

Learn about It Worked Examples

9 9

Key Points Web Links

10 10

Check Your Understanding Challenge Yourself

10 10



Copyright © 2018 Quipper Limited

1

  Lesson 5.4: Practice Examples Objective

11 11

Warm-Up Learn about It

11 11

Key Points Web Links

11 11

Check Your Understanding Challenge Yourself

12 12

Laboratory Activity

13

Performance Task

14

Self Check

16

Key Words

16

Wrap Up

17

Photo Credits

18

References

18

Answer Key

20







Copyright © 2018 Quipper Limited

2

  G  RADE 11/12 | PHYSICAL SCIENCE

Unit 5



Polarity of Molecules 

  There are millions of different molecules and there are many ways to sort them. As you have learned from the previous unit, the properties of molecules highly depend on their structure and the arrangement of their atoms in space. Because of this, their classification also varies due to their structural and geometrical differences.  One way to classify them is through their polarity, where molecules can be polar or nonpolar. Polar molecules are also called dipoles, or literally translating to molecules having two distinct poles which are positively and negatively charged. This characteristic in terms of polarity greatly influences the properties of molecules, which includes their boiling point, melting point, and solubility.  One example of polar molecules is water. You might have heard before that water is the universal solvent. It is very much capable of solubilizing a wide variety of substances. Do you know what makes water a very good solvent? 

Copyright © 2018 Quipper Limited

3

 



Essential Questions

 At the end of this unit, you should be able to answer the following questions.  ● What is electronegativity? ● What makes a molecule polar or nonpolar? ● What properties are affected by the polarity of the molecule? ● How do these properties vary based on polarity? ● What makes water a very good solvent? 

 Review  Review the concepts of ionization energy, electron affinity, and covalent bond. ● Ionization energy is the amount of energy needed to remove an electron from an atom in a gaseous ground state. ● Electron affinity is the change in energy level caused by adding an electron to an atom or ion. A greater decrease in energy level makes the atom or ion more stable. ● Covalent compounds are compounds formed from atoms sharing one or more pairs of electrons. The bond that holds atoms in a covalent compound is called a covalent bond. ● Covalent molecules are represented by Lewis structures. These are derived from the constituting elements’ Lewis dot symbols and show whether bonds are transferred or shared between these elements. ● The three-dimensional shape of a molecule can be predicted using its Lewis structure together with the valence-shell electron pair repulsion (VSEPR) or electron domain (ED) model. ● The ED model assumes that the shape of a molecule can be predicted by arranging the electrons in a geometry that keeps them separated as far as possible. ● Vectors are quantities with magnitude and direction. These characteristics of vectors are considered when adding them.  



Copyright © 2018 Quipper Limited

4

 

Lesson 5.1: Electronegativity 

Objectives  In this lesson, you should be able to: ● define electronegativity; ● familiarize the electronegativity trend; and ● compare the electronegativity of different elements.  Not all elements are created equal. They differ in many aspects causing variations among groups. When atoms form covalent bonds, they share electrons. However, sharing may or may not be equal among these atoms. What causes the electrons to be more attracted to certain atoms? 



Warm-Up

 Electronegativity Tug of War The differences in the quantity and arrangement of subatomic particles in elements affect many of their properties, including electronegativity. In this activity, you will observe how bonding electrons are attracted towards a certain atom in a bond.  Materials: ● masking tape ● rope  Procedure: 1. Group yourselves according to the following table. Note that your group must consist of members having the same strength as much as possible.  Group Name

No. of students

Group Name

No. of students

Na

1

N

3

B

2

F

4



Copyright © 2018 Quipper Limited

5

  2. After groups are assigned, the matches of tug of war will be done.  Guide Questions: 1. Which groups won against each which? Why do you think this is so? 2. What do the number of students represent? 

Learn about It   Electronegativity Electronegativity, represented by the lowercase Greek letter chi ( ), is   the measure of the ability of an atom to attract bonding pairs of electrons. The concept of electronegativity originated in the fact that several elements have different abilities to attract electrons in a bond. This means that some elements are better electron attractors than other elements. This concept was first introduced by Linus Pauling in the early 19th century.  Linus Pauling was an American chemist who developed a numerical scale of electronegativity of selected representative elements in the periodic table. The figure below shows a part of the periodic table where the general trend of electronegativity values increases across the periods (i.e. from left to right) and decreases within the groups (i.e. from top to bottom).  Even though electronegativity is associated with the ability to attract electrons, this property is different from electron affinity, or the energy released when an electron is incorporated on an atom. The latter measures the tendency of an individual atom to gain (or attract) electrons while the earlier measures the same tendency of an atom in a covalent bond. 

 

Copyright © 2018 Quipper Limited

6

 

 Fig. 1. Pauling’s electronegativity values based on thermochemical data.  Noble gases do not usually have electronegativity values. Since their shells are already full, they do not participate in bond formation. However, heavier noble gases such as Kr, Xe and Rn have been discovered to form covalent compounds at low temperatures and high pressures. Neil Bartlett, a British chemist, was able to observe the formation of the very first noble gas compound, xenon tetrafluoride (XeF4).  The higher the electronegativity value of a specific element, the greater is the attraction of electrons to the the atoms of that element. For example, in the Fig. 1, fluorine has an electronegativity value of 4.0, which signifies that it is the most electronegative among the representative elements. Lithium, calcium, and strontium, on the other hand, have electronegativity values of 1.0 which denote that they are the least electronegative among the representative elements.  Metals are considered to be poor electron attractors, which means that their electronegativity values are low. This explains why they lose their electrons most of the time. On the other hand, nonmetals are good electron attractors, which means that they have high electronegativity values. This explains why they gain electrons from external sources most of the time.  Electronegativity values are determined from thermochemical data, and the values vary from one element to another depending on the element’s atomic size, number 

Copyright © 2018 Quipper Limited

7

  of inner shell electrons, and nuclear charge. These factors determine the influence of the nucleus on the electron of interest. The capacity of an atom or an ion to attract electrons is also influenced by its electron affinity as addition of an electron can significantly affect its stability.  It should be noted that the pattern is just a general trend and not absolute, especially for transition metals. For example, the electronegativity of copper (  = 1.9) is higher than the element on its right, zinc (  = 1.6). A possible explanation for this particular example is that copper will be more stable when it gains an electron because it fills up all of its 3  d orbitals while zinc will be more unstable upon gaining an electron because it will have an unpaired electron in its newly occupied 4p orbital.  Determining the Electronegativity Difference The electronegativity difference, , is a very important mathematical quantity in chemistry. It describes the p  olarity of a covalent bond. Since a covalent bond is formed by sharing electrons between two atoms, the electronegativity of each atom significantly affect how electrons will position themselves in the space between the nuclei of the atoms. How electrons arrange themselves in a bond describes the polarity of a molecule, which will be discussed more in depth in the next lesson.  Polarity is directly described by the electronegativity difference, , between the constituting atoms. The following steps show how to calculate the electronegativity difference. Let us take a look at the bond C-H as an example.  Step 1 Identify the electronegativity values of each constituting atoms. You can use Fig. 1 as a reference, but modern periodic tables have these values, too. The bond C-H is consist of C and H atoms. Based on Fig. 1, C has electronegativity value of 2.55 while H has an electronegativity value of 2.20.  Step 2 Write the working equation. The electronegativity difference can be determined using the equation   where

 is the electronegativity difference between two atoms, and



Copyright © 2018 Quipper Limited

8

  and  Step 3

are the electronegativity values.

Evaluate the working equation and determine the difference. Take note that equation is applied inside an absolute value symbol, which means you are taking only the positive difference.

   Hence, the electronegativity difference between C and H is 0.35. 



 Example 1 Calculate the electronegativity difference in the H-H bond.  Solution: Step 1 Identify the electronegativity values of each constituting atoms. The  bond  H-H  is  consist of two H atoms. Based on Fig. 1, H has electronegativity value 2.20.  Step 2 Write the working equation.   Step 3

Evaluate the working equation and determine the difference. 



 Hence, the electronegativity difference on the H-H bond is 0.00. 



L  et us Practice Calculate the electronegativity difference in the F-F bond.  It is intuitive that the electronegativity difference in a bond that is composed of two similar atoms is zero. In this type of bonds, the attraction felt by electrons between the two nuclei is equivalent. This has a significant effect on the property of the 

Copyright © 2018 Quipper Limited

9

  bond.  Example 2 Calculate the electronegativity difference in the N-O bond.  Solution: Step 1 Identify the electronegativity values of each constituting atoms. The  bond  N-O  is  consist of N and O atoms. Based on Fig. 1, N has electronegativity value of 3.00 while O has an electronegativity value of 2.5.  Step 2 Write the working equation.   Step 3

Evaluate the working equation and determine the difference. 



 Hence, the electronegativity difference between N and O is 0.50. 



L  et us Practice Calculate the electronegativity difference in the B-F bond.  There are times that even though the bond is composed of two different atoms, their electronegativity values are quite close to one another. This results to a relatively small electronegativity difference. The electrons somehow feel a relatively equal attraction to both nuclei.  Example 3 Calculate the electronegativity difference in the H-Cl bond.  Solution: Step 1 Identify the electronegativity values of each constituting atoms. The  bond  H-Cl  is  consist of H and Cl atoms. Based on Fig. 1, H has electronegativity value of 2.20 while Cl has an electronegativity value of 3.16.  Step 2 Write the working equation. 

Copyright © 2018 Quipper Limited

10

    Step 3

Evaluate the working equation and determine the difference. 



 Hence, the electronegativity difference between H and Cl is 0.96.

 Most of the time, bonds formed between two different atoms have significant electronegativity difference. In these cases, the electrons are attracted more towards one of the nuclei. This results in a drastic change in the polarity of a bond.  Let us Practice Calculate the electronegativity difference in the H-F bond. 



Key Points

● Electronegativity (χ) is the measure of the ability of an atom to attract bonding pairs of electrons. ● Linus Pauling was an American chemist who developed a numerical scale of electronegativity of selected representative elements in the periodic table. ● The higher the electronegativityvalue of a specific element, the greater is the attraction of the atoms of that element to the bonding pair of electrons. ● The electronegativity difference (Δχ) between two atoms describes the polarity of the bond they can form. 



Web Links



For further information, you can check the following web links: ● Read about the life of Linus Pauling, the developer of the electronegativity scale. 

The Nobel Foundation. 1962. ‘Linus Pauling - Biographical’ https://www.nobelprize.org/nobel_prizes/peace/laureates/1962/pauling-bio.html



Copyright © 2018 Quipper Limited

11

  ● Watch this video about the most electronegative element. 

Periodic Videos. 2010. ‘Fluorine - Periodic Table of Videos’ https://www.youtube.com/watch?v=vtWp45Eewtw





Check Your Understanding



A. Calculate the electronegativity difference for the following bonds. 1. H-Cl 2. C-O 3. P-Cl 4. Sb-O 5. Br-F 6. As-Cl 7. B-F 8. C-H 9. Be-Cl 10.N-H  B. Arrange the following in increasing electronegativity. 1. Cl, P, S 2. N, O, Na 3. Ga, Ba, P 4. Al, Cl, C 5. O, Te, Se 



Challenge Yourself



Answer the following questions briefly and clearly. 1. How do you rationalize the contrast between the electronegativity of metals and nonmetals? 2. Why do halogens have the highest electronegativity values? 3. What factors affect the electronegativity of an atom? 4. Why do copper and zinc deviate from the trend? 5. How is electronegativity related to electron affinity? 



Copyright © 2018 Quipper Limited

12

 

Lesson 5.2: Determining Polarity of Molecules 

Objective  In this lesson, you should be able to: ● determine if a molecule is polar or nonpolar given its structure.  Polarity depends on the structure of the molecule. Molecules with uneven electronegativity have partial positive and negative charges which makes them polar. Otherwise, they are nonpolar. There are ways to determine the polarity of a molecule which requires your knowledge on electronegativity and VSEPR theory. What exactly makes a compound polar or nonpolar? 



Warm-Up

 Charged Attraction Polarity somehow describes how the electrons in a bond orient themselves. Depending on this, bonds in molecules can acquire partial charges. This differentiates polar and nonpolar compounds. In this activity, you will observe how polar and nonpolar compounds behave in the presence of static electricity.  Materials: ● 2 cups ● water ● wool ● vegetable oil ● 2 balloons  Procedure: 1. Put water in a cup. 2. Charge a balloon by rubbing it against a piece of wool. 3. Pour the water to make a steady stream and place the balloon near the stream. Observe what happens to the stream. 4. Repeat steps 1-4 using vegetable oil instead of water.  

Copyright © 2018 Quipper Limited

13

  Guide Questions: 1. Why does the balloon get charged upon rubbing it against the piece of wool? 2. What happened to the stream of water? Explain why. 3. What happened to the stream of oil? Explain why. 

Learn about It  Polarity of Bonds Polarity is the measure of the degree of inequality in the attraction of electrons between atoms in a molecule. Polarity means having dipoles, a positive and a negative end. These partial charges are created based on the orientation of the electrons in a bond, which highly depends on the electronegativities of each constituting atoms.  Based on polarity, bonds can either be polar or nonpolar. In determining the polarity of a bond, it is important to know the electronegati...


Similar Free PDFs