Lap report 1 PDF

Title Lap report 1
Author Anonymous User
Course General Physics
Institution University of Texas at Austin
Pages 4
File Size 86.5 KB
File Type PDF
Total Downloads 22
Total Views 144

Summary

Lab report ...


Description

Force and Fan Carts This lab is an inquiry lab, because we are finding out how the different speeds of the fans will move the carts filled with different objects with different masses along with the carts being rolled on varied surfaces through a simulation.

Question If this experiment was done in real life would the data, we collected from the simulation differ from the data we collect from the real-world experiment.

Hypothesis My hypothesis is that if the fan is higher then the cart is going to have a higher velocity also depending on what surface the fan is making the cart to roll on, because the force the fan has is going to determine how fast and far the cart is going to go.

Variables The independent variable is the fan speed since it will be changed and manipulated. The acceleration is the dependent variable because it changes because of the fan speed. The constant variable is the mass of the objects in the cart since they will never change and will stay the same throughout the whole experiment.

Materials and Procedures One computer with access to virtual lab Materials within Virtual Lab: Fan with three speeds oLow oMedium oHigh Cart Odometer Frictionless Surface Track Finish line after 500 meters Timer

Procedures 1.Before beginning gather up all of the materials listed in the above two lists. 2.Open the virtual lab simulation. 3.Select Low for the fan speed, and No Friction for the surface type. 4.Open the data tab and select the buttons Speed and Line graph. 5.Click the Play button. Let the cart run past the finish line. 6.Record the data from the Speed data table into Table A in the Low fan speed column. 7.Record the total distance to the finish line, and the total elapsed time in Table B. 8.Use the data in Table B to calculate the average velocity of the cart, and record the answer in Table B using cm/s 9.Look at the Speed vs.Time graph and determine the acceleration of the cart. Record answer in cm/s in Table B. 10.Select the Position button to view the plot of Position vs. Time. Record description of the graph in table C. 11.Select the Speed button again and open the Experiment tab. 12.Select Medium for the fan speed, and click the reset button to start the cart at the beginning of the track 13. Repeat steps 4 and 5. 14.Record the data from the Speed data table into Table A in the Medium fan speed column. 15.Repeat steps 7 through 11 16.Select High for the fan speed, and click the reset button to start the cart at the beginning of the track. 17.Repeat step 13 18.Record the data from the Speed data table into Table A in the High fan speed column. 19.Repeat step 15. 20.Open the Data tab and select the Speed button. 21.Open the Experiment tab and select Low for the fan speed, and click the reset button to start the cart at the beginning of the track. 22.Open the Data tab and locate the timer. 23.Click the play button to start the cart. Stop the cart at 4 seconds by hitting the Pause button. 24.Open the Experiment tab and turn the fan speed OFF. Return to the Data tab and click on the Play button to resume the cart’s run. 25.After the cart crosses the finish line, observe the plot of Speed vs. Time graph. Describe how this graph differs from the earlier trials. 26.Record observations in Table D

Groups This experiment is an experimental group because of having the independent variable which is the fan have to change.

Data Table A Elapsed Time(s)

Cart Speed (Low fan speed) (cm/s)

Cart Speed (Medium fan speed) (cm/s)

Cart Speed (High fan speed) (cm/s)

0 1 2 3 4 5 6 7

0 18.0 36.0 54.0 72.0 90.0 108.0

0 24.0 48.0 72.0 96.0 120.0 144.0

0 32.0 64.0 96.0 128.0 160.0

126.0

Table B low Elapsed time 7.4 Total distance 500 Avg velocity 67.6 Acceleration low:18 med:24 high:32

med 6.4 500 78.1

high 5.6 500 89.3

Table C Fan speed Low

med

Observations of Position vs. Time Graphs Speed vs. Time is linear; Position vs. Time Graph is curved. The positions of the cart are further apart because the velocity of the cart is increasing The graphs are similar to the graphs of the low speed fan, but the slope is steeper. The

cart moves further per second, so it takes less time to reach the finish line. High: The graphs are similar to the first two examples, but the slope is even steeper. Since the speed was the greatest for this example the cart moves the farthest with each second, so it takes less time to cover the distance.

Table D Fan speed Low/off

Observations of Speed vs. Time Graph The first part of the graph is a sloped line indicating an increase in speed over the first 4 seconds. The line flattens out after the first 4 seconds which means the speed no longer increases. Since the fan was turned off the cart did not accelerate anymore.

Analysis: The tables above show the acceleration, velocity, and position of the cart, with three different fan speeds, and interpretation of the graphs. The table shows that the elapsed time of the cart was 7.4 seconds using low fan speed, 6.4 seconds using medium fan speed, and 5.6 seconds for high fan speed. The Speed vs. Time graph is linear whereas the Position vs. Time graph is curved. When the speed of the cart increases the slope gets even steeper. The slope of the line flattens out after 4 seconds when the cart loses acceleration.

Conclusion Overall, this experiment helped me to visualize how acceleration and Speed affects the movement of an object. I used the total distance traveled by the cart and divided it by the elapsed time for each cart, to determine the average velocity for each cart. One possible error for this experiment is that my calculations could be wrong, resulting in the wrong data. Another possible error is that when I stopped the cart during the last trial, I did not stop the cart at 4 seconds. This could have thrown off my graph and my analysis of the graph. Overall I enjoyed this experiment and am looking forward to doing more experiments like this....


Similar Free PDFs