Modelo relatorio 7 - Física experimental - Engenharia Civil PDF

Title Modelo relatorio 7 - Física experimental - Engenharia Civil
Author Gilson Carvalho Filho
Course Laboratório 2 De Física
Institution Universidade Federal de Alagoas
Pages 7
File Size 360.9 KB
File Type PDF
Total Downloads 771
Total Views 966

Summary

UNIVERSIDADE FEDERAL DE ALAGOASINSTITUTO DE FÍSICALABORATÓRIO DE ENSINOForças atuando sobre condutores com correnteRoteiro de Física Experimental 3Experimento 7MaceióSumário1 Introdução......................................................................................................................


Description

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE FÍSICA LABORATÓRIO DE ENSINO

Forças atuando sobre condutores com corrente

Roteiro de Física Experimental 3 Experimento 7

Maceió

Sumário 1 Introdução.........................................................................................................................................2 2 Objetivo............................................................................................................................................4 3 Material.............................................................................................................................................4 4 Procedimento....................................................................................................................................4 Referência.............................................................................................................................................6 Anexo...................................................................................................................................................6

1

1 Introdução Quando um condutor percorrido por uma corrente elétrica de intensidade i está imerso em um campo magnético B, uma força magnética Fm (Força de Lorentz) atuará sobre este condutor. Esta força magnética, ou força de interação magnética, surge devido ao movimento dos portadores de carga, elétrons, no condutor, pois, o campo magnético não atua em cargas em repouso. Assim, a força magnética atuante sobre uma partícula carregada que se move com uma velocidade v no interior de uma região onde há um campo magnético pode ser calculada pela expressão , o x indica o produto vetorial:  x B)  F=q( V

(1)

Na figura 1 temos a representação de um condutor inserido em um campo magnético perpendicular entrando no plano da folha e um portador de carga negativa movendo-se no seu interior com uma velocidade v.

Figura 1: Força magnética sobre um elemento de carga no interior de um fio condutor que se move a umavelocidade v em função da corrente elétrica i. Nota-se que o vetor força

Fm

é perpendicular ao plano ocupado por e B que são também

perpendiculares entre si, assim, a relação seguinte assegura os valores dos vetores: F=q⋅v⋅B

(2)

Figura 2: Fluxo de portadores de carga através de uma secção reta de área A em um condutor.

2

Se um elemento de carga dq flui através da secção transversal A em um dado intervalo de tempo dt, a corrente elétrica que passa por essa área é dada por: I=

dq dt

(3)

Assim, a força (dF) que atua sobre esse elemento será dada pela expressão (4) abaixo, em que dq = idt. dF =i⋅dt⋅v ×B

(4)

Considerando que no intervalo de tempo dt a carga dq terá percorrido o comprimento dl, podemos expressar a velocidade v como: v=

dl dt

(5)

Portanto dF =i⋅dt

dl ×B dt

(6)

Logo, para um pedaço de fio reto de comprimento l imerso num campo magnético uniforme B e conduzindo uma corrente i teremos, após integrar a expressão (6): Fm =i⋅l⋅B

(7)

Esta expressão representa então a força magnética (Força de Lorentz) que atua no condutor. Neste experimento utilizaremos espiras de material condutor, conforme figura 3, com comprimentos variados onde serão inseridas em um campo magnético uniforme de um imã permanente.

Figura 3: espiras de material condutor depositadas sobre pacas de vibra de vidro. Estas espiras estarão conectadas a uma balança de precisão onde poderemos deduzir mediante a interação com o campo gravitacional a força magnética atuante no condutor. Nas duas seções verticais da espira de condutor os elétrons viajam em direções opostas, e as duas forças atuantes sobre eles cancelam uma a outra. Somente a seção horizontal da espira de condutor, cujo comprimento L é indicado em cada ocasião na espira, afeta a força de Lorentz medida. Uma das espiras de condutor tem duas voltas 3

(n=2), cada uma delas com 50 mm de comprimento horizontal. A força de Lorentz sobre essa espira de condutor é exatamente equivalente àquela de uma espira simples e de duas vezes o comprimento L (L = 100 mm, n =1). Os resultados experimentais serão mostrados em gráficos de F como função de I e o valor da indução magnética B pode ser obtido da inclinação da linha de regressão.

2 Objetivo Obter o valor do Campo Magnético de um ímã permanente através de medidas daforça atuante sobre um condutor (força de Lorentz) imerso em um campo magnético uniforme, quando percorrido por corrente elétrica.

3 Material Material

Quantida

Balança (LGN 310) sobre haste;

1

Haste suporte de 1m de comprimento;

1

Base tripé;

1

Grampo em ângulo reto;

1

Distribuidor;

1

Ímã em forma de U;

1

Tira de metal condutor com plugs;

2

Cabo de conexão, 32A, 75cm, vermelho;

1

Cabo de conexão, 32A, 75cm, azul;

1

Peças polos retangulares;

2

Espira, L=12,5mm, n=1;

1

Espira, L=25mm, n=1;

1

Espira, L=50mm, n=1;

1

Espira, L=50mm, n=2;

1

Fonte de alimentação 0-32V/0-5A

1

4 Procedimento 1. Montar o experimento segundo a figura 4. 2. As espiras devem ser conectadas em série através de duas tiras metálicas flexíveis com plugs tipo banana-banana, primeiramente a um distribuidor, e após, via um amperímetro à saída de voltagem de uma fonte de alimentação. A distância entre as tiras metálicas deve ser a maior possível, assim, as forças do campo magnético não atuarão sobre elas;

4

Figura 4: Arranjo experimental para a balança de corrente. 3. A balança deve ser montada a uma haste e deve ser preparada com isenção de fluxo de corrente na espira de condutor; 4. Coloque os calços dos polos sobre o ímã com espaçamento de aproximadamente 1 cm. Colocar a placa que contem a espira de condutor com L = 12,5mm no gancho da balança. A seção horizontal do condutor deve posicionar-se perpendicularmente às linhas de campo e deve ficar no meio do campo uniforme; 5. Realizar a medida da massa da espira sem a presença de corrente elétrica. Para isso, ajuste as massas de contrapeso no braço da balança de forma a obter o equilíbrio. Para o ajuste fino, utilizar o botão do Vernier. Feito o ajuste, anotar o valor da massa indicada. Obs.: Para detalhe sobre o ajuste fino consulte o anexo ao final do roteiro. 6. Ligar a fonte. Ajustar o valor da tensão para 10V girando o botão de ajuste de tensão no sentido anti-horário. Observar na balança se houve variação no ponto de equilíbrio, caso afirmativo, faça os devidos ajustes e considere o novo valor da massa para a espira. 7. Aumente gradativamente de 0,5A em 0,5 A o valor da corrente elétrica através do botão de ajuste de corrente na fonte de alimentação. Para cada novo valor de corrente um ajuste na balança será necessário a fim de mantê-la em equilíbrio. Utilizar sempre o botão do vernier para fazer esse ajuste. 8. Montar uma tabela contendo os valores de i(A) versus M(Kg). 9. Calcular a força de Lorentz usando a diferença entre as duas leituras de massa, antes e depois de aplicar corrente. Monte uma tabela com os valores de força e correntes aplicadas.

5

10. Repetir os procedimentos anteriores para as outras espiras; 11. Traçar gráficos das forças de Lorentz como função das correntes aplicadas para cada uma das espiras. Encontrar os valores de B através da inclinação da linha de regressão e encontre um valor médio para B; 12. Traçar gráficos de F como função de L, mantendo fixa a corrente. Encontre um B médio; 13. Medir com um gaussímetro e sonda Hall o campo magnético do ímã. Compare-o com os valores médios de B encontrados nos procedimentos 11 e 12 acima.

Referência [1] Manual de roteiros experimentais da Phywe. [2] Halliday, David – Fundamentos de Física Vol. 3 – eletricidade e magnetismo, 8ª ED. Rio de Janeiro, TLC, 2009. [3] Sears e Zemasnky’s, Física III – eletromagnetismo, 12ª ED, São Paulo, Addison Wesley,2009

Anexo Medidas de massa na balança usando o vernier. No mostrador principal da balança, cada graduação tem um valor de 0,1 gramas. A cima desse mostrador existe um Vernier que divide as medidas principais em incrementos de 0,01 gramas. Para realizar a leitura de uma medida, primeiro lê-se a medida na escala principal em seguida verifica-se qual das marcações do vernier coincide com alguma da escala principal. Feita a identificação, acrescenta-se a medida do vernier à da escala principal. Na imagem a baixo temos um exemplo.

Na imagem a cima, a escala principal indica 6,7 gramas. Verificando a escala do Vernier vemos que a marca correspondente a 0,04 gramas alinha-se com uma das marcações da escala principal, logo a medida correspondente será: 6,74 gramas.

6...


Similar Free PDFs