PENERAPAN KONSEP TERMODINAMIKA PADA MESIN PENDINGIN (KULKAS) PDF

Title PENERAPAN KONSEP TERMODINAMIKA PADA MESIN PENDINGIN (KULKAS)
Author Yudi Susanto
Pages 23
File Size 2 MB
File Type PDF
Total Downloads 473
Total Views 841

Summary

PENERAPAN KONSEP TERMODINAMIKA PADA MESIN PENDINGIN (KULKAS) Diajukan untuk memenuhi tugas Fisika Dasar I, yang dibimbing oleh : Rianita Puspa Sari, ST. Disusun oleh Yudi Susanto 1510631140144 JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS NEGERI SINGAPERBANGSA KARAWANG 2016 ABSTRAK ABSTRACT Te...


Description

Accelerat ing t he world's research.

PENERAPAN KONSEP TERMODINAMIKA PADA MESIN PENDINGIN (KULKAS) Yudi Susanto

Related papers

Download a PDF Pack of t he best relat ed papers 

MAKALAH FISIKA DASAR PROSES T ERMODINAMIKA PROGRAM ST UDI T EKNIK INDUST RI Diana Ast ut i laporan fiisika bhaskara dewa adi

PENERAPAN KONSEP TERMODINAMIKA PADA MESIN PENDINGIN (KULKAS) Diajukan untuk memenuhi tugas Fisika Dasar I, yang dibimbing oleh : Rianita Puspa Sari, ST.

Disusun oleh Yudi Susanto

1510631140144

JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS NEGERI SINGAPERBANGSA KARAWANG 2016

ABSTRAK

ABSTRACT

Termodinamika adalah cabang fisika

Thermodynamics is a branch of physics

yang mempelajari hubungan antara kalor dan

that studies the relationship between heat and

usaha mekanik. Secara luas termodinamika

mechanical effort. Extensively investigated

mengkaji tentang suhu dan kalor serta teori

the thermodynamic temperature and the heat

kinetik gas.

and the kinetic theory of gases. termodinamika

The basic concept of thermodynamics

dilaksanakan pada mesin-mesin yang dapat

carried out on machines that can assist and

membantu dan mempermudah pekerjaan

facilitate the work of man.

Konsep

dasar

manusia.

Machines that work according to the

Mesin yang bekerja sesuai dengan perumusan

Clausius

Clausius

(second

law

of

kedua

thermodynamics) is the engine coolant

Termodinamika) adalah mesin pendingin

(refrigator). In practice, the engine coolant

(refrigator).

mesin

wearing electrical energy to move heat from

pendingin memakai energi listrik untuk

the cooled object to the outside air

memindahkan

temperature is higher.

Dalam

kalor

(Hukum

formulation

prakteknya,

dari

benda

yang

didinginkan ke udara luar yang suhunya lebih tinggi.

In this paper we will discuss about the refrigerator which is one example of engine

Di dalam makalah ini kita akan

coolant (refrigator).

membahas tentang kulkas yang merupakan salah

satu

contoh

mesin

pendingin

(refrigator).

i

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa, karena berkat rahmat dan hidayah-Nya penulis dapat menyelesaikan makalah yang berjudul Penerapan Termodinamika pada Mesin Pendingin (Kulkas). Makalah ini di susun dalam rangka memenuhi tugas Fisika Dasar I. Melalui kesempatan yang sangat berharga ini penulis menyampaikan ucapan terima kasih kepada semua pihak yang telah membantu menyelesaikan tugas Fisika Dasar I ini, dan terutama kepada yang terhormat : 1.

Rianita Puspa Sari, ST. Selaku dosen dan pembimbing mata kuliah Fisika Dasar I.

2.

Rekan-rekan jurusan Teknik Industri angkatan 2015.

3.

Semua pihak yang telah memberikan bantuan baik berupa moral ataupun materil dalam proses penyelesaian makalah ini.

Semoga Tuhan yang Maha Esa memberikan balasan yang setimpal atas segala bantuan yang telah diberikan. Serta penulis berharap agar makalah ini dapat bermanfaat, khususnya bagi penulis sendiri, umumnya bagi semua pihak.

Karawang, Januari 2016

Penyusun

ii

DAFTAR ISI ABSTRAK ...................................................................................................................................... i KATA PENGANTAR .................................................................................................................. ii DAFTAR ISI ................................................................................................................................ iii DAFTAR GAMBAR ................................................................................................................... iv BAB I PENDAHULUAN ..............................................................................................................1 1.1 Latar Belakang...........................................................................................................................1 1.2 Rumusan Masalah .....................................................................................................................1 1.3 Tujuan ........................................................................................................................................2 1.4 Manfaat ......................................................................................................................................2 BAB II LANDASAN TEORI ........................................................................................................3 2.1 Termodinamika..........................................................................................................................3 2.2 Kalor ..........................................................................................................................................3 2.3 Suhu ...........................................................................................................................................3 2.4 Energi ........................................................................................................................................3 2.5 Usaha dan Proses dalam Termodinamika ..................................................................................3 2.7 Hukum kedua Termodinamika ..................................................................................................4 2.8 Koefisien Performansi ...............................................................................................................4 2.9 Entropi .......................................................................................................................................4 2.10 Mesin Pendingin (Refrigator) ..................................................................................................4 2.11 Kulkas ......................................................................................................................................4 2.12 Penguraian Konsep Termodinamika .......................................................................................5 2.12.1 Klasifikasi Sistem Termodinamika ......................................................................................5 2.12.2 Proses-Proses dalam Termodinamika ...................................................................................6 2.12.3 Hukum Kedua Termodinamika ............................................................................................9 BAB III PEMBAHASAN ............................................................................................................11 3.1 Penerapan Hukum kedua Termodinamika pada Kulkas..........................................................11 3.2.1 Komponen-Komponen pada Kulkas ....................................................................................11 3.1.1 Prinsip Kerja pada Kulkas ....................................................................................................14 BAB IV PENUTUP......................................................................................................................16 4.1 Kesimpulan ..............................................................................................................................16 4.2 Saran ........................................................................................................................................16 DAFTAR PUSTAKA ..................................................................................................................17

iii

DAFTAR GAMBAR Gambar 2.12.1 Ilustrasi klasifikasi sistem termodinamika..............................................................5 Gambar 2.12.2.1 Diagram Proses Isotermal ....................................................................................6 Gambar 2.12.2.2 Diagram Proses Isokhorik....................................................................................7 Gambar 2.12.2.3 Diagram Proses Isobarik ......................................................................................7 Gambar 2.12.2.4 Diagram Proses Adiabatik ...................................................................................8 Gambar 2.12.3 Ilustrasi Hukum kedua Termodinamika .................................................................9 Gambar 3.1 Kulkas ........................................................................................................................11 Gambar 3.1.1 Prinsip Kerja pada Kulkas ......................................................................................14

iv

BAB I PENDAHULUAN

1.1 Latar Belakang Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropidan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana hubungan termodinamika berasal. Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecuali perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Hukum kedua termodinamika terkait dengan entropi. Tidak ada bunyi untuk hukum kedua termodinamika yang ada hanyalah pernyataan kenyataan eksperimental yang dikeluarkan oleh kelvin-plank dan clausius. Pernyataan clausius: tidak mungkin suatu sistem apapun bekerja sedemikian rupa sehingga hasil satu-satunya adalah perpindahan energi sebagai panas dari sistem dengan temperatur tertentu ke sistem dengan temperatur yang lebih tinggi. Pernyataan kelvinplanck: tidak mungkin suatu sistem beroperasi dalam siklus termodinamika dan memberikan sejumlah netto kerja kesekeliling sambil menerima energi panas dari satu reservoir termal.(sumber Fundamentals of engineering thermodynamics (Moran J., Shapiro N.M. - 6th ed. - 2007 - Wiley) Bab5). "total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya hal ini disebut dengan prinsip kenaikan entropi" merupakan korolari dari kedua pernyataan diatas (analisis Hukum kedua termodinamika untuk proses dengan menggunakan sifat entropi). Di masa sekarang ini hukum kedua termodinamika banyak diterapkan di bidang teknologi, khususnya pada mesin pendingin (refrigator), contohnya kulkas. 1.2 Rumusan Masalah Dari latar belakang di atas maka masalah dapat di rumuskan sebagai berikut: 1. Apa yang dimaksud dengan Termodinamika ? 2. Bagaimana konsep Hukum kedua Termodinamika ? 3. Bagaimana konsep penerapan Hukum kedua Termodinamika pada kulkas ?

1

1.3 Tujuan 1. Menjelaskan apa itu Termodinamika. 2. Menjelaskan Hukum kedua Termodinamika. 3. Menjelaskan dan menguraikan bagaimana Hukum kedua Termodinamika diterapkan pada kulkas. 1.4 Manfaat 1. Sebagai sumber bacaan (referensi) bagi para akademisi yang sedang menjalani pendidikan. 2. Sebagai pemahaman mengenai Termodinamika dan penerapannya.

2

BAB II LANDASAN TEORI

2.1 Termodinamika

Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (diluar) sistem disebut lingkungan. 2.2 Kalor Kalor adalah salah satu bentuk energi sama halnya dengan energi kimia, potensial maupun kinetik. Kalor didefinisikan sebagai energi panas yang dimiliki oleh suatu zat. 2.3 Suhu Kata suhu sering diartikan sebagai suatu besaran yang menyatakan derajatpanas atau dinginnya suatu benda. 2.4 Energi Dalam

fisika,

energi

adalah

properti

fisika

dari

suatu

objek,

dapat

berpindah melalui interaksi fundamental, yang dapatdiubah bentuknya namun tak dapat diciptakan maupun dimusnahkan. Joule adalah satuan SI untuk energi, diambil dari jumlah yang diberikan pada suatu objek (melalui kerja mekanik) dengan memindahkannya sejauh 1 meter dengan gaya 1 newton. 2.5 Usaha dan Proses dalam Termodinamika Dalam melakukan pengamatan mengenai aliran energi antara panas dan usaha dikenal dua istilah yaitu sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.Usaha yang dilakukan oleh sistem (gas) terhadap lingkunganya bergantung pada proses proses–proses dalam termodinamika, di antaranya proses isobarik, isokhorik, isotermik dan adiabatik. 2.6 Hukum Termodinamika Hukum-hukum

termodinamika

pada

prinsipnya

menjelaskan

peristiwa

perpindahan panas dan kerja pada proses termodinamika. Sejak perumusannya, hukum hukum ini

3

telah menjadi salah satu hukum terpenting dalam fisika dan berbagai cabang ilmu lainnya yang berhubungan dengan termodinamika. Hukum-hukum ini sering dikaitkan dengan konsep-konsep yang jauh melampau hal-hal yang dinyatakan dalam kata-kata rumusannya. 2.7 Hukum kedua Termodinamika Hukum II Termodinamika memberikan batasan-batasan terhadap perubahan energi yang mungkin terjadi dengan beberapa perumusan. 1. Tidak mungkin membuat mesin yang bekerja dalam satu siklus, menerima kalor dari sebuah reservoir dan mengubah seluruhnya menjadi energi atau usaha luas (Kelvin Planck). 2. Tidak mungkin membuat mesin yang bekerja dalam suatu siklus mengambil kalor dari sebuah reservoir rendah dan memberikan pada reservoir bersuhu tinggi tanpa memerlukan usaha dari luar (Clausius). 3. Pada proses reversibel, total entropi semesta tidak berubah dan akan bertambah ketika terjadi proses irreversibel (Clausius). 2.8 Koefisien Performansi Koefisien performansi merupakan hasil bagi kalor Q2 yang dipindahkan dari reservoir dingin dengan usaha W yang dibutuhkan untuk memindahkan kalor ini. 2.9 Entropi Entropi adalah salah satu besaran termodinamika yang mengukur energi dalam sistem per satuan temperatur yang tak dapat digunakan untuk melakukan usaha. 2.10 Mesin Pendingin (Refrigator) Mesin pendingin merupakan peralatan yang prinsip kerjanya berkebalikan dengan mesin kalor. Pada mesin pendingin terjadi aliran kalor dari reservoir bersuhu rendah ke reservoir bersuhu tinggi dengan melakukan usaha pada sistem. 2.11 Kulkas Kulkas atau lemari es atau lemari pendingin adalah sebuah alat rumah tangga listrik yang menggunakan refrigerasi (proses pendingin) untuk menolong pengawetan makanan.

4

2.12 Penguraian Konsep Termodinamika Termodinamika adalah ilmu tentang energi, yang secara spesifik membahas tentang hubungan antara energi panas dengan kerja. Seperti telah diketahui bahwa energi didalam alam dapat terwujud dalam berbagai bentuk, selain energi panas dan kerja, yaitu energi kimia, energi listrik, energi nuklir, energi gelombang elektromagnit, energi akibat gaya magnit, dan lain-lain . Energi dapat berubah dari satu bentuk ke bentuk lain, baik secara alami maupun hasil rekayasa tehnologi. Selain itu energi di alam semesta bersifat kekal, tidak dapat dibangkitkan atau dihilangkan, yang terjadi adalah perubahan energi dari satu bentuk menjadi bentuk lain tanpa ada pengurangan atau penambahan. Prinsip ini disebut sebagai prinsip konservasi atau kekekalan energi. Prinsip thermodinamika tersebut sebenarnya telah terjadi secara alami dalam kehidupan sehari-hari. Bumi setiap hari menerima energi gelombang elektromagnetik dari matahari, dan dibumi energi tersebut berubah menjadi energi panas, energi angin, gelombang laut, proses pertumbuhan berbagai tumbuh-tumbuhan dan banyak proses alam lainnya. Proses didalam diri manusia juga merupakan proses konversi energi yang kompleks, dari input energi kimia dalam maka nan menjadi energi gerak berupa segala kegiatan fisik manusia, dan energi yang sangat bernilai yaitu energi pikiran kita. Dengan berkembangnya ilmu pengetahuan dan teknologi, maka prinsip alamiah dalam berbagai proses thermodinamika direkayasa menjadi berbagai bentuk mekanisme untuk membantu manusia dalam menjalankan kegiatannya. 2.12.1

Klasifikasi Sistem Termodinamika

Gambar 2.12.1 Ilustrasi klasifikasi sistem termodinamika

Suatu sistem thermodinamika adalah sustu masa atau daerah yang dipilih, untuk dijadikan obyek analisis. Daerah sekitar sistem tersebut disebut sebagai lingkungan. Batas antara sistem dengan lingkungannya disebut batas sistem.

5

1. Sistem tertutup Merupakan sistem massa tetap dan identitas batas sistem ditentukan oleh ruang zat yang menempatinya. 2. Sistem terbuka Pada sistem ini, zat melewati batas sistem. Panas dan kerja bisa juga melewati batas sistem. 3. Sistem terisolasi Adalah sebuah sistem yang sama sekali tidak dipengaruhi oleh lingkungannya. Sistem ini massanya tetap dan tidak ada panas atau kerja yang melewati batas sistem. 2.12.2 Proses-Proses dalam Termodinamika Terdapat empat proses dalam gas pada bahasan termodinamika. Usaha yang terdapat pada gas yang mengalami proses-proses termodinamika tersebut akan diuraikan sebagai berikut : 1. Proses isotermal

Gambar 2.12.2.1 Diagram Proses Isotermal

Proses isotermal adalah suatu proses perubahan keadaan gas pada suhu tetap. Menurut Hukum Boyle, proses isotermal dapat dinyatakan dengan persamaan : pV = konstan atau p1V1 = p2V2 Dalam proses ini, tekanan dan volume sistem berubah sehingga persamaan W = p ΔV tidak dapat langsung digunakan. Untuk menghitung usaha sistem dalam proses isotermal ini digunakan cara integral. Misalkan, pada sistem terjadi perubahan yang sangat kecil sehingga persamaan usahanya dapat dituliskan sebagai

6

Jika konstanta n R, dan besaran suhu (T) yang nilainya tetap dikeluarkan dari integral, akan diperoleh :

W = nR T (lnV2 – lnV1) W = n RT ln (V2/V1) atau W = n RT ln (p2/p1) 2. Proses isokhorik

Gambar 2.12.2.2 Diagram Proses Isokhorik

Proses isokhorik adalah suatu proses perubahan keadaan gas pada volume tetap. Menurut Hukum Gay-Lussac proses isokhorik pada gas dapat dinyatakan dengan persamaan : p/T = konstan atau p1/T1 = p2/T2 Oleh karena perubahan volume dalam proses isokhorik ΔV = 0 maka usahanya W = 0. 3. Proses isobarik

Gambar 2.12.2.3 Diagram Proses Isobarik

Proses isobarik adalah suatu proses perubahan keadaan gas pada tekanan tetap. Menurut Hukum Charles, persamaan keadaan gas pada proses isobarik dinyatakan dengan persamaan :

7

V/T = konstan atau V1/T1 = V2/T2 Oleh karena volume sistem berubah, sedangkan tekanannya tetap, usaha yang dilakukan oleh sistem dinyatakan dengan persamaan : W = pΔV = p (V2 – V1) 4. Proses Adiabatik Proses adiabatik adalah suatu proses perubahan keadaan gas di mana tidak ada kalor (Q) yang masuk atau keluar dari sistem (gas). Proses ini dapat dilakukan dengan cara mengisolasi sistem menggunakan bahan yang tidak mudah menghantarkan kalor atau disebut juga bahan adiabatik. Adapun, bahan-bahan yang bersifat mudah menghantarkan kalor disebut bahan diatermik Proses adiabatik ini mengikuti persamaan Poisson sebagai berikut : p Vγ = konstan atau p1 V1γ = p2 V2γ (1–6) Oleh karena persamaan gas ideal dinyatakan sebagai pV = nRT maka Persamaan (9–4) dapat ditulis : T1V1(γ –1) = T2 V2(γ –1) (1–7) Dengan γ = CP/CV = konstanta Laplace, dan CP/CV > 1. CP adalah kapasitas kalor gas pada tekanan tetap dan CV adalah kalor gas pada volume tetap.

Gambar 2.12...


Similar Free PDFs