Pengelolaan Limbah Cair Rumah Sakit PDF

Title Pengelolaan Limbah Cair Rumah Sakit
Author Achmad Rizki Azhari
Pages 81
File Size 3.8 MB
File Type PDF
Total Downloads 213
Total Views 344

Summary

PENGELOLAAN LIMBAH CAIR RUMAH SAKIT Disiapkan : Tri Joko,Ir.M.Si - 0811270271 LATAR BELAKANG Latar Belakang • Limbah Rumah Sakit merupakan salah satu sumber atau penyebab potensial pencemaran lingkungan.Keberadaan Rumah Sakit di tengah komunitas masyarakat seringkali menimbulkan konflik akibat adany...


Description

PENGELOLAAN LIMBAH CAIR RUMAH SAKIT

Disiapkan : Tri Joko,Ir.M.Si - 0811270271

LATAR BELAKANG

Latar Belakang • Limbah Rumah Sakit merupakan salah satu sumber atau penyebab potensial pencemaran lingkungan.Keberadaan Rumah Sakit di tengah komunitas masyarakat seringkali menimbulkan konflik akibat adanya kerusakan atau permasalahan lingkungan seperti tercemarnya sungai yang vital bagi kehidupan penduduk. • Oleh karena itu, Pemerintah mewajibkan Rumah Sakit untuk menyediakan Instalasi Pengolahan Air Limbah melalui kebijakan – kebijakan yang mengatur upaya pengamanan dampak limbah terhadap lingkungan, seperti : a. UU No. 36/2009 tentang Kesehatan b. UU No.32/2009 tentang Perlindungan dan Pengelolaan Lingkungan Hidup c. PP No 101 Tahun 2014 tentang Pengelolaan Limbah B3 d. Kep Men LH Nomor 5 TAHUN 2014 tentang Baku Mutu Air Limbah e. PerMen Kes nomor1204/MENKES/PerXI/2004 tentang Sanitasi Rumah Sakit

PERSYARATAN KESEHATAN LINGKUNGAN RUMAH SAKIT

(KEPMENKES RI No. 1204 /SK/X/2004) 1. Penyehatan ruang bangunan dan halaman rumah sakit. 2. Persyaratan hygiene dan sanitasi makanan dan minuman. 3. Penyehatan air. 4. Pengelolaan limbah. 5. Pengelolaan tempat penyucian linen. 6. Pengendalian serangga, tikus dan binatang pengganggu lain. 7. Dekontaminasi melalui disinfeksi dan sterilisasi. 8. Persyaratan pengamanan radiasi. 9. Upaya promosi kesehatan dari aspek kesehatan lingkungan.

Persyaratan pengelolaan limbah. 1. Limbah medis padat. 2. Limbah non medis padat. 3. Limbah cair. 4. Limbah gas. (minimasi, pemilahan, pewadahan, pengumpulan, pengolahan, daur ulang, pemusnahan, dsb)

Persyaratan pengelolaan tempat pencucian linen.

1. Suhu air panas untuk pencucian. 2. Penggunaan jenis deterjen dan disinfektan. 3. Standar kuman.

PENGOLAHAN LIMBAH CAIR RUMAH SAKIT

PERMASALAHAN 1. 2. 3. 4. 5.

Jumlah, Kualifikasi, Kompetensi SDM Perencanaan IPAL yang salah/tidak sesuai IPAL sudah tua dan tidak handal Operasi dan Pemeliharaan Tidak Benar Sumber Air Limbah Berubah Kapasitas dan Kualitas 6. IPAL tidak efektip, efisiensi rendah 7. Tidak didukung manajemen dalam OP 8. Tidak memiliki SOP IPAL 9. Sarana Laboratorium tidak memadai 10. Adanya perubahan Input Air Limbah

Skema diagram karakterisik limbah cair

Characterization of Hospital Wastewater, Risk Waste Generation and Management Practices in Lahore, Muhammad Imran Meo1, Sajjad Haydar2, Obaidullah Nadeem3, Ghulam Hussain2 and Haroon Rashid2

Study of Hospital Wastewater Characteristic in Malang City 1,Prayitno, 2,Zaenal Kusuma,3,Bagyo Yanuwiadi, 4,Rudy W Laksmono 1,Doctoral Student Of Environment Program, Post Graduate Program Of Brawijaya University, Malang, Indonesia

Pengolahan Limbah Cair Rumah Sakit 1.

Pengolahan Fisik : sedimentasi, flotasi, sentrifugasi, penyaringan, pengeringan, insinerasi, penapisan 2. Pengolahan Kimia : netralisasi, koagulasi & Flokulasi, Oksidasi, Reduksi 3. Pengolahan Biologi : aerasi, lumpur aktif, lagoon 4. Pengolahan Thermal

Laboratorium, Poli Gigi, Kamar bedah, Radiologi

Laundry

Bak Kontrol Saluran air limbah

Desinfeksi

Saluran air limbah

Pompa

Pre treatment (Defoaming)

Pengolahan Kimia

Bak Kontrol

Insinerasi Filtrasi Pemanfaatan kembali (re Use)

Penyiraman Taman dan kebutuhan lain

Kamar mandi / WC Kamar jenazah Kamar Perawatan

Dapur Kafetaria

Pompa

Bak Penampung

Pompa Saluran air limbah

Pre treatment (Pemisah Lemak) Saluran air limbah

Lumpur Kering

Desinfeksi

Pengolahan Lumpur

Bak Kontrol

Saringan + Comminutor Pompa

Bak Kontrol

Pengolahan Biologis

Pengolahan Kimia

Filtrasi

Lemak

Desinfeksi Bak Penampung

Insinerasi Taman Perpipaan air limbah Pengolahan optional

Cuci Mobil Distribusi Pembersihan lantai

Perpipaan air bersih

Kebutuhan lainnya Perpipaan lumpur

Pompa Dibuang ke badan air

PENDEKATAN PERENCANAAN WWTP a. b. c. d.

Strength and characteristics of wastewater Flow rates and their fluctuations Mass loading Design Criteria : 1. Hydraulic flow diagram 2. Detention period or time 3. Flow through velocity 4. Settling velocity 5. Surface loading rate @ over flow rate 6. Weir loading rate 7. Organic loading (BOD @ COD @ VSS loading) 8. Food to Microorganism ratio, F/M 9. Mean cell Residence Time 10. Hydraulic Loading 11. Volumetric Loading 12. Basin geometry (L:B:D) length, breadth and depth ratio.

Krakteristik Input air limbah : 1. BOD5 = 80 – 125 mg/lt, COD = 100 – 200 mg/lt 2. Debit = 60 l/dt (disain pengembangan) Pertimbangan lahan tersedia dan pemanfaatan sarana yg ada 1. Vol Loading = 0,2 – 0,3 kg BOD5/m3.d 2. Waktu kontak = 7 – 10 jam

Reminder: Important treatment technologies Process

Technical options

Reason for popularity in ecosan

Composting

Composting plants for secondary treatment Composting toilet

Suitable for faecal matter and organic solid waste treatment Produces valuable end product (compost) Low energy demand Pathogen destruction (if thermophilic)

Anaerobic treatment

Septic tanks UASB Anaerobic ponds Anaerobic digesters

Suitable for faecal sludge, blackwater, faeces (e.g. together with manure), organic solid waste Preserves nitrogen (unlike aerobic wastewater treatment) Produced biogas for cooking, lighting, heating

“Natural systems” (lowrate biological systems)

Constructed wetlands Aerobic or facultative ponds/lagoons Waste stabilisation ponds

Suitable for greywater treatment Low energy use Cheap if land available Can have aesthetic and environmental benefits (e.g. increased bird life)

High-rate biological or physical systems

Package plants using attached growth processes Membrane bioreactor Trickling filter

Suitable for greywater treatment in urban areas (limited space) High quality effluent is produced

Example of On-Site Wastewater Treatment for a Large Healthcare Facility

Healthcare sewage

Bar Screen

Grit Chamber

filtrate

Equalization Tank

Aeration Tank

filtrate

Sludge dewatering press

Thickener

Aerobic digester

activated sludge

Clarifier

SECONDARY TREATMENT

PRIMARY TREATMENT

SLUDGE TREATMENT Sludge cake Composting, landfilling, land reclamation, silviculture, or other uses (depending on levels of heavy metals, toxic organics and pathogens)

TERTIARY TREATMENT

Filter (pressed sand or carbon filter) Chlorine or UV disinfection Treated wastewater

Secondary Treatment Using Activated Sludge Process

Sludge drying bed or mechanical dewatering process

Pathogen Reductions Vary from: low (99.99+%)

MANAJEMEN OPERASI DAN PEMELIHARAAN IPAL

OPERASI DAN PEMELIHARAAN

Operasi SUATU PROSES PEMANFAATAN SUMBER DAYA UNTUK MENGHASILKAN PRODUK (BARANG DAN JASA) YANG BERGUNA UNTUK MENCAPAI TUJUAN DAN SASARAN ORGANISASI.

Pemeliharaan UPAYA UNTUK MENJAGA SUPAYA SARANA PRODUKSI & DISTRIBUSI MAMPU BERFUNGSI SECARA MEMUASKAN SESUAI RENCANA. 27

SIKLUS DEMING

plan action

continual improvement

check

do

SIKLUS SISTEM MANAJEMEN OPERASI DAN PEMELIHARAAN PENGORGANISASIAN

PEBYUSUNAN DOKUMEN (sop & instrksi kerja) PELATIHAN STAFF

RENCANA PROGRAM KERJA & PENJADWALAN

PELAKSANAAN OPERASI & PEMELIHARAAN

KEBUTUHAN SUMBER DAYA DAN ANGGARAN

IDENTIFIKASI KEBUTUHAN O&M

PELAPORAN USULAN TINDAKAN KOREKSI DAN TINDAKAN PREVENTIF

ANALISIS PENYEBEB PENYIMPANGAN

SISTEM MANAJEMEN OPERASI & PEMELIHARAAN

PENGUKURAN KINERJA

PEMANTAUAN

EVALUASI KINERJA OPERASI DAN PEMELIHARAAN

EVALUASI TERHADAP PENYIMPANGAN KINERJA DAN PROSEDUR 29

PERSYARATAN MANAJEMEN OPERASI DAN PEMELIHARAAN

1. DUKUNGAN PENUH DARI MANAJEMEN PUNCAK 2. KEPEMIMPINAN YANG KOMPETEN 3. TANGGUNG JAWAB YANG JELAS 4. DESENTRALISASI / PENDELEGASIAN WEWENANG 5. PENYEDIAAN SUMBER DAYA 6. DAPAT DIPERTANGGUNG JAWABKAN 7. KESEDERHANAAN 8. KELENGKAPAN 9. KELENTURAN 10.ARUS INFORMASI YANG CEPAT 30

TRICKLING FILTER

• Food to microorganism ratio (F/M) • Represents the daily mass of food supplied to the microbial biomass, X, in the mixed liquor suspended solids, MLSS • Units are Kg BOD5/Kg MLSS/day

• Since the hydraulic retention time, q = V/Qo, then

Typical range of F/M ratio in activated sludge units

Treatment Process

F/M Kg BOD5/Kg MLSS/day

Extended aeration

0.03 - 0.8

Conventional

0.8 - 2.0

High rate

> 2.0

Design parameters for activated sludge processes q c ( d)

q ( h)

F/M

Qr/Q

X (mg/L)

Conventional

5-15

4-8

0.2-0.4

0.25-5

1,500-3,000

Complete-mix

5-15

3-5

0.2-0.6

0.25-1

3,000-6,000

Step-aeration

5-15

3-5

0.2-0.4

0.25-0.75

2,000-3,500

0.2-0.5

1.5-3

1.5-5.0

0.05-0.15

200 – 500

Contactstabilization

5-15

0.5-1 3-6

0.2-0.6

0.25-1

1,000-3,000 4,00010,000

Extendedaeration

20-30

18-36

0.05-0.15

0.75-1.5

3,000-6,000

High-rate aeration

5-10

0.5-2

0.4-1.5

1-5

4,00010,000

Pure-oxygen

8-20

1-3

0.25-1.0

0.25-0.5

6,000-8,000

Process

Modifiedaeration

Operational characteristics of activated sludge processes Process

Flow model

Aeration system

BOD5 removal efficiency (%)

Conventional

Plug-flow

Diffused air, mechanical aerators

85-95

Complete-mix

Complete-mix

Diffused air, mechanical aerators

85-95

Step-aeration

Plug-flow

Diffused air

85-95

Modified-aeration

Plug-flow

Diffused air

60-75

Contactstabilization

Plug-flow

Diffused air, mechanical aerators

80-90

Extended-aeration

Complete-mix

Diffused air, mechanical aerators

75-95

High-rate aeration

Complete-mix

Diffused air, mechanical aerators

75-90

Pure-oxygen

Complete-mix

Mechanical aerators

85-95

PENGOLAHAN KIMIA

Technologies • Chemical methods Coagulation, flocculation, combined with flotation and filtration, precipitation, ion exchange, electroflotation, electrokinetic coagulation. • Physical methods Membrane-filtration processes (nanofiltration, reverse osmosis, electrodialysis, . . .) and adsorption techniques. • Biological treatments Biodegradation methods such as fungal decolorization, microbial degradation, adsorption by (living or dead) microbial biomass and bioremediation systems

Advantages and disadvantages Chemical methods Advantages : • Rapid and efficient process • Removes all pollutants types, produce a highquality treated effluent • No loss of sorbent on regeneration and effective Disadvantages : • Expensive, and although the pollutants are removed, accumulation of concentrated sludge creates a disposal problem • High energy cost, chemicals required.

Advantages and disadvantages Physical methods Advantages : • The most effective adsorbent, great, capacity, produce a high-quality treated effluent • No sludge production, little or no consumption of chemicals. Disadvantages : • Economically unfeasible, formation of byproducts, technical constraints

Advantages and disadvantages Biological treatments Advantages : • Economically attractive, publicly acceptable treatment Disadvantages : • Slow process, necessary to create an optimal favorable environment, maintenance and nutrition requirements

COAGULATION • Definition Destabilisation of colloid particles by the addition of chemicals (coagulant) • Applications Industrial waste containing colloidal and suspended solids (e.g. pulp and paper, textile)

Coagulant type • Metal coagulants :aluminium-based coagulants, Fero-based coagulants magnesium chloride (MgCl2) • Organic polymer coagulants : Polyacrylamide, Chitosan, Moringa olifeira Alginates (brown seaweed extracts)

Coagulant agent

Alum Magnesium chloride

Polyacrylamide

Moringa oleifera Chitosan

Coagulant - Reaction • Some of the coagulants used include:  Aluminium sulphate  Ferric chloride  Ferric sulphate  Lime (not true coagulant)  Polymer as coagulant aid eg cationic, anionic, non-ionic.  PAC – new types Al2(SO4)3.18H20+ 3Ca(HCO3)

2AI(OH)3+ 3CaSO4+ 6C02 + 18H20

AI(OH)3 or Al2O3 ( form as floc is the key element causing destabilisation of charge).

Raw waste

Floc Formation

Settle floc

Flocculation • is a process of forming aggregate of flocs to form larger settleable particle. The process can be described as follows:

 Mutual collision of small floc resulting in bigger size.  Usually slow speed or gentle mixing is used so as not to break the large flocs due to shear.  Polymer or large molecular wt compound is added to enhance floc build up. Most of them are proprietary chemicals.

Flocculation mechanism

Flocculation mechanism

Flocculation • The benefits of flocculation are:

 To improve settling of particles in sedimentaion tank  To increase removal of suspended solids and BOD  To improve performance of settling tanks

Differences • Coagulation: is a chemical technique which is directed towards the destabilisation of the charged colloidal particals. • Flocculation: is the slow mixing technique which promotes the agglomeration of the stabilised particles.

CHEMICAL PRECIPITATION • Definition: Removal of metal ions from solution by changing the solution composition, thus causing the metal ions to form insoluble metal complexes. solution with soluble ions

chemical reaction

insoluble complexes

+

clean Water

Natural methods of precipitation include settling or sedimentation, where a solid forms over a period of time due to ambient forces like gravity or centrifugation

CHEMICAL PRECIPITATION (Applications) • Removal of metals from waste stream – e.g. plating and polishing operations, mining, steel manufacturing, electronics manufacturing – include arsenic, barium, chromium, cadmium, lead, mercury, silver

• Treat e t of hard water – removal of Mg2+ and Ca2+ • Phosphorus removal • Making pigments • Removing salts from water in water treatment

CHEMICAL PRECIPITATION (Theoretical Background) 

K eq

(A )(B )  (AB s ) -

Due to dilute concentration,

Ksp = [A+] [B-] = solubility product constant where [ ] refer to molar concentration Eg.

A+ + B-

ABs

Compound

Solubility (mg/L)

Ksp

CaCO3

18

5 x 10-9

CaCl

745000

159 x 106

CHEMICAL PRECIPITATION (Basic Principles) A. Add chemical precipitants to waste stream B. Mix thoroughly C. Allow solid precipitates to form floc by slow mixing D. Allow floc to settle in clarifier

CHEMICAL PRECIPITATION (Types of Precipitation) Heavy metals removal • Hydroxide precipitation (OH-) • Sulphide precipitation (S2-) • Carbonate precipitation (CO32-) Phosphorus removal • Phosphate precipitation (PO42-)

CHEMICAL PRECIPITATION (Hydroxide Precipitation) •

Add lime (CaO) or sodium hydroxide (NaOH) to waste stream to precipitate heavy metals in the form of metal hydroxides. Cd2+ + Ca(OH)2  Cd (OH)2  + Ca2+

• • •

CaO in the form of slurry (Ca(OH)2) while NaOH in the form of solution. NaOH is easier to handle but is very corrosive. Will form floc and settle in clarifier

CHEMICAL PRECIPITATION (Sulphide Precipitation) • •

• •

Use of sulphide in the form of FeS, Na2S or NaHS Better metal removal as sulphide salt has low solubility limit Cu2+ + FeS  CuS  + Fe2+ Limitation: can produce H2S (g) at low pH 2H+ + FeS  H2S + Fe2+ At low pH, reaction will proceed to the right. Thus, require pH > 8 for safe sulphide precipitation.

CHEMICAL PRECIPITATION

Reaction rate • Reaction rate is a measure of how fast a reaction occurs, or how something changes during a given time period. • Consider the oxidation of glucose, C6H12O6 : C6H12O6(s) + 6 O2 g → 6 CO2(g) + 6 H2O(g) • One of the things that happens during this reaction is simply that glucose gets used up as it reacts with oxygen in the air, and carbon dioxide and water start to form.

• A common measure of reaction rate is to express how the concentration of a reaction participant changes over time. It could be how the concentration of a reactant decreases, or how the concentration of a product increases. This is the standard method we will be using. • Now that we have something that changes to measure, we must consider the second key aspect of determining rate - time. Rate is a measure of how something changes over time.

Change in concentration Change in time

OXIDATION a method by which wastewater is treated by using oxidizing agents. Generally, two forms viz. • Chemical oxidation and • UV assisted oxidation using chlorine, hydrogen peroxide, fe to ’s reage t, ozo e, or potassiu per a ga ate are used for treating the effluents, especially those obtained from primary treatment (sedimentation)

ION EXCHANGE • Definition Ion exchange is basically a reversible chemical process wherein an ion from solution is exchanged for a similarly charged ion attached to an immobile solid particle. Removal of undesirable anions and cations from solution through the use of ion exchange resin • Applications – Water softening – Removal of non-metal inorganic – Removal or recovery of metal

ION EXCHANGE (Medium - resin) • •



Consists of an organic or inorganic network structure with attached functional group Synthetic resin made by the polymerisation of organic compounds into a porous three dimensional structure Exchange capacity is determined by the number of functional groups per unit mass of resin

ION EXCHANGE (Type of Resin) a. Cationic resin - exchange positive ions b. Anionic resin – exchange negative ions (a)

(b)

ION EXCHANGE (Exchange Reactions) •

Cation exchange on the sodium cycle:

Na2 · R + Ca2+  Ca · R + 2Na+ where R represents the exchange re...


Similar Free PDFs