PMATH 330 - Much of these notes is based on the material provided by Barbara Csima for the PDF

Title PMATH 330 - Much of these notes is based on the material provided by Barbara Csima for the
Author Enny Moty
Course Introduction to Mathematical Logic
Institution University of Waterloo
Pages 91
File Size 678.8 KB
File Type PDF
Total Downloads 26
Total Views 124

Summary

Much of these notes is based on the material provided by Barbara Csima for the online version of this course....


Description

¬B

= {¬((P → Q) → R), ((P → Q) → R))} ∪ sub((P → Q)) ∪ sub(R) = {¬((P → Q) → R), ((P → Q) → R)), (P → Q), R} ∪ sub(P ) ∪ sub(Q) = {¬((P → Q) → R), ((P → Q) → R)), (P → Q), R, P, Q} ◭

   

.

T F

T T T T F F F F

T F T F T F T F

F T T F F T T F

F T

T F T F T T T T

ϕ T T F F

ψ T F T F

F T F T F F F F

(ϕ → ψ) T F T T

T T T F T F F T

T T F F

T F T F

T F T T

F T F T

F F T T

ϕ=P = ˆ ψ = ϕ[ψ/ˆ

ψ]

ψˆ = ϕ[ψ/ˆ ˆ ] → χ[ψ/ ˆ ψ ] = (θ[ψ/ψ

ψ]

→ ξ[ψ/ˆ

= ϕ[ψ/ˆ

T T F F

T F T F

T F F F

F T F T

T F F F

T T T T F F F F

T F T F T F T F

T T F F T T F F

ϕ T T T T F F F F

ψ T F T F T F T F

θ T T F F T T F F

T F T F F F F F

T F F F F F F F

(ϕ ∨ ψ) ((ϕ ∨ ψ) ∨ θ) T T T T T T T T T T F T T T F F

T F F F F F F F

T F F F F F F F

(ψ ∨ θ) (ϕ ∨ (ψ ∨ θ)) T T T T T T F T T T T T T T F F

T T F F

T F T F

T F T T

eˆ(R) = e(¬R).

T F T T

m(k)

k

∨ · · · ∨ lk

)

m(k)

k

∧ · · · ∧ lk

)

{a1 , . . . , an } ∪ {b1 , . . . , bm }

{Q, R} {P, ¬R} {¬P, R } {¬R, R}

{P, Q, R} {¬P, Q, ¬S } {Q, R, ¬S } {P, ¬R} {¬P, Q, ¬S} {¬R, Q, ¬S }



Γ

Res1 (Γ) = {{¬P }, {R, S}, {¬R, P }, {¬R}, {S, P }} Res2 (Γ) = Res1 (Γ) ∪ {{S}} Res3 (Γ) = Res2 (Γ) ◭







ψ

(¬P → (P → Q)) ((Q → (P → Q)) → ((¬P ∨ Q) → (P → Q))) (Q → (P → Q))

(ψ → χ) ((ψ → χ) → (ϕ → (ψ → χ))) (ϕ → (ψ → χ)) ((ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))) ((ϕ → ψ) → (ϕ → χ))

ϕ

(ψ → (ϕ → ψ))

Γ ⊢ (ϕ → χ)

Γ ⊢ (¬ϕ → ϕ) ((¬ϕ → ϕ) → ((¬ϕ → ¬ϕ) → ¬¬ϕ)) ((¬ϕ → ¬ϕ) → ¬¬ϕ) (¬ϕ → ¬ϕ) ¬¬ϕ (¬¬ϕ → ϕ) ϕ

F

¬P ∈ Θ

x = y +1 ∃y x = y + 1 (x = 0 ∨ ∃y x = y + 1)

∪ sub((S(x3 ) ∨ ¬S(x1 ))) ={ϕ, ∀x1 (¬∀x2 R(x2 , c, x1 ) → x3 = g(x1 ))), (S (x3 ) ∨ ¬S(x1 ))}∪ sub(S(x3 )) ∪ sub(¬S(x1 )) ∪ sub((¬∀x2 R(x2 , c, x1 ) → x3 = g(x1 ))) ={ϕ, ∀x1 (¬∀x2 R(x2 , c, x1 ) → x3 = g(x1 ))), (S (x3 ) ∨ ¬S(x1 )), S (x3 ), ¬S(x1 ), S(x1 ), (¬∀x2 R(x2 , c, x1 ) → x3 = g(x1 ))} ∪ sub(¬∀x2 R(x2 , c, x1 )) ∪ sub(x3 = g(x1 )) ={ϕ, ∀x1 (¬∀x2 R(x2 , c, x1 ) → x3 = g(x1 ))), (S (x3 ) ∨ ¬S(x1 )), S (x3 ), ¬S(x1 ), S(x1 ), (¬∀x2 R(x2 , c, x1 ) → x3 = g(x1 )), ¬∀x2 R(x2 , c, x1 )), x3 = g(x1 )} ∪ sub(∀x2 R(x2 , c, x1 )) ={ϕ, ∀x1 (¬∀x2 R(x2 , c, x1 ) → x3 = g(x1 ))), (S (x3 ) ∨ ¬S(x1 )), S (x3 ) , ¬S(x1 ), S(x1 ), (¬∀x2 R(x2 , c, x1 ) → x3 = g(x1 )), ¬∀x2 R(x2 , c, x1 )), x3 = g(x1 ), ∀x2 R(x2 , c, x1 ), R(x2 , c, x1 )} ◭

f

b

f

f

b

x1 , x2 ) → x1 = d) → ¬f (x2 ) = x3 ) → ∀x3 R(x3 , c))



a

y=x

.

β

β

β

A (t) = f A (val A β (t1 ), . . . , val

A (x ·(1 + 1)) = val A β (x) · val β (1 + 1) A = β(x) · (val A β (1) + val β (1)) = 5 · (1 + 1) = 10



β

(t1 ) = val A β

(t1 ), . . . , valA

β[x/tom] (x)

∈ MA

γ

[y/3](y + 1), valγA[y/3](x)) ∈≤N

β

(t) = val A ˆ

β

(t) = val Aβ (c) = cA = valˆβA(c) = valˆβA (t)

β

(t) = valβA(x) = β(x) = ˆβ(x) = valˆβA(t)

(ti ) βˆ β

= val A

A (t) = f A (val A β (t1 ), . . . , valβ (tn ))

= f A (valˆβA (t1 ), . . . , valˆβA(tn )) = val ˆβA (t).

β

A (t1 ) = val A (t ) = val A ˆ β (t2 ) = val ˆ β 1

β |= ϕ.

β

(t1 ), . . . , valAβ (tn )) ∈ RA

ˆ β

(t1 ), . . . , valAˆ

β |= ϕ.

ˆ β |= ϕ. β |= ψ

β |= ϕ.

ˆ β[x/a] |= ψ.

1

F

→ γ ∗2 ).

A, β 6|= ϕi

1

→ γ ∗2 ) = (γ1 → γ2 )∗

β

A (sx/t) = valβ[ x/valA

β β

(sx/t) = cA = val A β[x/valA

A (sx/t) = val A β (t) = val β[x/valA β

(sx/t) = βy = val Aβ[x/valA β

β

(ti x/t) = val A β[x/valA (t)] (ti ) β

x x (f (t1 , . . . , tn )x/t) = val A β (f (t1 /t, . . . , tn /t)) A x x = f A (val A β (t1 /t), valβ (tn /t)) A = f A (val A β[x/valβA(t)] (t1 ), . . . , valβ[x/valβA(t)] (tn ))

= val A β[x/valA

β

x (t1 x/t1 ) = val A β (t2 /t2 )

(t1 ) β[x/valA β (t)] β (t)]

β

A = valβ[ x/valA (t)] (t2 ) β

|= t1 = t2

(t1 x/t), . . . , val βA (tn x/t)) ∈ RA

A (tn )) β[x/valβA(t)] (t1 ), . . . , valβ[x/valA β (t)] β

β

β

(t)]

(t)]

(t)]

|= R(t1 , . . . , tn )

|= ¬ψ

|= (ψ ∧ θ )

∈ RA

β β

β

(t)]

(t)]

|= ∀xψ

|= ∀yψ.

(t)][x/a]

|= ψ

⇒|= (ϕ ↔ ψ)∗ ⇒|= (ϕ∗ ↔ ψ ∗ ) ⇒ ϕ∗ ≡ ψ ∗

β[y/a]

(y )]

|= ϕ

≡∃u(¬∀x(u = z → x = z) → R(y, z)) ≡∃u(∃x¬(u = z → x = z) → R(y, z)) ≡∃u∀x(¬(u = z → x = z) → R(y, z))

Qx¬ψ0

Qx¬ψ0 ≡ ¯

Qxψ1

¯ ¬ψ0 ≡ ¬Qxψ0 ≡ ¬ψ = ϕ, Qxψ1 ≡ Qx ¯ 1 ) = qn(ψ1 ) +1 = qn(ψ0 ) +1 = qn(Qxψ 0 ) = qn(ψ) = qn(ϕ), qn(Qxψ ¯ 1 ) = free(ψ1 )\{x} = f ree(¬ψ0 )\{x} = f ree(ψ0 )\{x} = free(Qxψ0 ) = f ree(ψ) = free(ϕ) free(Qxψ

free(∀xψ ) = f ree(ψ) \ {x} = f ree(ψ0 ) \ {x} = free(∀xψ0 )

ψ

(∀x(H (x) → M (x)) → (H(s) → M (s))) (H (s) → M (s)) H(s)

ψ → ϕ)) ˆ

ψ → ϕ)) ˆ ∗ = (ϕ ˆ ∗ → (ψˆ∗ → ϕˆ∗ )) = (ϕ → (ψ → ϕ)).

β

(t) = valβA(ˆ...


Similar Free PDFs