Replicación del DNA Definicion y contexto de replicación PDF

Title Replicación del DNA Definicion y contexto de replicación
Course Biología molecular
Institution Universidad Autónoma de Nayarit
Pages 6
File Size 264.4 KB
File Type PDF
Total Downloads 87
Total Views 153

Summary

Resumen del tema replicacion ...


Description

Replicación del DNA Definicion y contexto de replicación Una de las características mas notables del ADN es su capacidad para replicarse, Capacidad de formar copias de si mismo Dicha replicación es llevada a cabo en la fase de Síntesis (S) del ciclo celular, Etapa obligada para realizar la división celular La información genética se transfiere de una célula a otra mediante el proceso de replicación del ADN Objetivo: Conservar la información genética En principio las dos hebras del DNA deberán separarse y después mediante la acción de una enzima añadir desoxirribonucleotidos y según la complementariedad de bases, construir ADN a partir de dos hebras molde iniciales Es bidireccional y discontinua pag 37 armendariz Bidireccional La replicación del ADN en eucariotes es bidireccional, ya que a partir del sitio de origen (ORI, también llamados ARS en eucariotes), se sintetizan las dos cadenas en ambos sentídos, con dos puntos de crecimiento que forman lo que se conoce como horquillas de replicación (figura 4-2). En organismos eucariotes, debido al gran tamaño del ADN, existen múltiples orígenes de replicación (sitios ORI), por lo que a la replicación se la considera multifocal (figura 4-3). Los sitios ORI son secuencias específi cas ricas A y T y controlan la replicación de una unidad de ADN llamada replicón. La presencia de bases A:T facilita la separación de las hebras y la formación de la burbuja de replicación. En los cromosomas de bacterias y virus existe un origen único de replicación por molécula de ADN; este sitio ORI permite la replicación de todo el ADN circular, por lo que se afirma que la replicación es monofocal (figura 4-4). Discontinua La replicación siempre se produce en sentido 5’ → 3’, y el extremo 3’-OH libre es el punto a partir del cual se produce la elongación del ADN. Esto plantea un problema: las cadenas tienen que crecer de forma simultánea a pesar de que son antiparalelas, es decir, cada cadena tiene el extremo 5’ enfrentado con el extremo 3’ de la otra cadena. Por ello, una de las cadenas debería sintetizarse en dirección 3’ → 5’. Esta incógnita la resolvieron los científicos japoneses Reiji Okazaki y Tsuneko Okazaki en la década de 1960, al descubrir que una de las nuevas cadenas del ADN se sintetizaba en forma de fragmentos cortos que, en su honor, se denominan fragmentos de Okazaki. Su longitud suele variar entre 1000 y 2000 nucleótidos en las bacterias y entre 100 y 400 nucleótidos en eucariotes. La cadena que se sintetiza en el sentido que avanza la horquilla de replicación se denomina hebra adelantada, líder o conductora (leading strand), y se

Ciclo Celular En la fase G1, la célula inicia su ciclo de vida con un tamaño reducido. Durante esta etapa, se dedicará a aumentar su tamaño y a llevar a cabo las funciones celulares típicas de la interfase. En algún momento de G1, las células pueden entrar en una etapa de especialización denominada G0, donde realizarán funciones específicas y no se dividirán por un tiempo indeterminado. En este caso están las neuronas y las células hepáticas maduras. Las células que no entran en G0 continúan a la fase S, que es la etapa en la cual se replica el material genético. Durante este periodo, la célula debe asegurar que todo el DNA que conforma su genoma se copie, generando dos moléculas idénticas. En la siguiente fase, denominada G2, se activan los mecanismos de revisión y reparación del genoma, para asegurar en la medida de lo posible que las moléculas de DNA generadas en la fase S no contengan errores de copia que sean incompatibles con la supervivencia de la descendencia. En esta fase es cuando se activan también los mecanismos de división celular que darán origen a las células hijas. Finalmente, en la fase M se lleva a cabo la división física de la célula original, que ahora da lugar a dos células hijas, cada una de las cuales contiene una de las copias de DNA que se generaron durante la fase S.

Origen de la replicación

El DNA es una hebra doble de nucleótidos con una secuencia determinada, que no tiene señales adicionales que diferencien las funciones de una secuencia en particular. Se sabe que en esas hileras de nucleótidos están ubicados los genes, y que cada uno de ellos proporciona información para construir organismos, pero no hay señales que muestren dónde inicia y dónde termina determinado gen; del mismo modo, sabemos que, además de genes, el DNA también contiene secuencias específicas que no generan productos génicos, pero que son primordiales para que los genes puedan regularse de manera adecuada. Entre otras secuencias de esta naturaleza, está el llamado origen de replicación, que es el sitio donde debe iniciar la copia del material genético, en cada ciclo celular. En los organismos procariontes, cuyos genomas son relativamente sencillos, hay un solo origen de replicación, en tanto que en los eucariontes, con genomas más amplios y complejos, se encuentran varios orígenes de replicación. Según algunos autores, existen 330 orígenes en el genoma de 14 Mb de la levadura común, y probablemente más de 10 000 en los metazoarios. En las bacterias, cuyo organismo modelo es la enterobacteria Escherichia coli, el sitio de origen se denomina OriC, y está formado por módulos cortos de secuencia repetida, con una gran cantidad de nucleótidos de adenina y timina dispuestos en cuatro módulos con la secuencia 5′-TGTGGATAA-3′ y tres módulos con la secuencia 5′-GATCTNTTTATTT-3′. En las levaduras, los orígenes de replicación se llaman ARS (siglas de autonomous replicate sequence, pues son secuencias que pueden iniciar replicación cuando se colocan en un plásmido). Las secuencias ARS se dividen en módulos funcionales denominados dominios A y B. El A contiene la secuencia central A/TTTTATG/ATTTA/T, que muestra un alto grado de conservación entre diferentes orígenes. El B muestra más variabilidad en su secuencia, sin que esta variabilidad tenga un efecto notorio sobre el inicio de la replicación. A partir del origen de replicación, se forman dos sitios de copia activa del DNA, denominados horquillas de replicación. Como ya se ha demostrado desde hace varios decenios, el movimiento de estas horquillas es bidireccional a partir del origen, de manera que, según avanza la copia del DNA, las horquillas se van separando entre sí en direcciones contrarias, tanto en el genoma circular de E. coli como en los cromosomas lineales de los eucariontes superiores (fig. 3-3). Entonces, estos sitios de origen de replicación señalan el lugar específico donde el proceso de copia del DNA inicia, y funcionan como sitios de anclaje para las proteínas que realizan el proceso.

Enzimas Participantes La maquinaria encargada de la replicación del ADN es muy compleja y está formada por un grupo de proteínas que actúan en conjunto con una secuencia de ADN especifica ya establecida Helicasa: Enzima encargada de separar las dos hebras del ADN mediante la rotura de los puentes de hidrogeno que se establecen entre las bases nitrogenadas de las dos cadenas del ADN (Ocasiona super enrollamientos positivos a los lados de la burbuja de replicación) Proteinas de unión a cadena sencilla (SSB, singlestrand ADN binding proteins en procariotes y RPA en eucariotes): Evitan la formación de puentes de hidrogeno entre las dos cadenas separadas por helicasas permite que se copien Topoisomerasas: son enzimas isomerasas que actúan sobre la topología del ADN, pueden cortar o formar enlaces fosfodiéster ya sea una de las hebras (topoisomerasa I) o en las dos (topoisomerasa II) que forman el ADN. Esta escisión selectiva permite al ADN liberar la tensión contorsional, con lo que se deshace el superenrollamiento, el cual en caso de persistir detendría la replicación. De esta manera se permite el acceso a la cadena de ADN a todas las enzimas involucradas en la replicación. Primasa: es una enzima que sintetiza pequeños fragmentos de ARN de entre 8 y 10 nucleótidos de longitud, conocidos como cebadores o primers, complementarios a un fragmento del ADN. La unión de los cebadores al ADN proporciona un extremo 3´ necesario para que la ADN polimerasa (enzima que sintetiza ADN y que no puede añadir nucleótidos si no existe un extremo 3´libre) lleve a cabo su acción. Los cebadores, al ser ARN, luego son degradados por las nucleasas Rnasa H1 y sustituidos por ADN por acción de otra ADN polimerasa. Rnasa H1: enzima encargada de retirar los cebadores de ARN durante la síntesis de los fragmentos de Okazaki y en los procesos de reparación del ADN. FEN1/RTH1: también llamada endonucleasa flap 1 (flap endonuclease 1), se encarga de remover el ribonucleotido 5’ del fragmento de Okazaki. El Nick (falta de enlace fosfodiéster entre dos nucleótidos adyacentes) resultante es sellado por la ADN ligasa. Ligasa: enzima que cataliza la formación del enlace fosfodiéster entre nucleótidos contiguos. Telomerasa: es una ribonucleoproteína con actividad de ADN polimerasa dirigida por ARN (transcriptasa inversa) capaz de sintetizar una secuencia determinada de ADN que permite el alargamiento de los telómeros (extremos de los cromosomas eucariotes). Antígeno nuclear de células en proliferación (PCNA): es un homotrímero que forma una estructura de toroide, la cual es abierta transitoriamente por acción del factor de replicación C (RFC, replication factor C), lo que permite su recircularización alrededor de la doble hélice del ADN a la altura del extremo del primer en la cadena líder. La estructura toroide del PCNA alrededor de la cadena de ADN permite su libre desplazamiento por la misma. PCNA interactúa con la ADN polimerasa, sirviendo como una pinza que sostiene a la polimerasa en el extremo del primer y le permite sintetizar la cadena de ADN. ADN polimerasa: son las principales enzimas en este proceso. Son capaces de sintetizar nuevas cadenas de ADN a partir de una hebra patrón o molde y las unidades estructurales correspondientes (desoxirribonucleótidos). Una característica importante de esta enzima es que añade los nucleótidos en la dirección 5’ → 3’ siempre y cuando haya un extremo 3’ disponible. Como consecuencia de esto, la dirección en la cual leerá la cadena molde de ADN será de 3’ → 5’. En eucariotes se han descrito por lo menos cinco ADN polimerasas involucradas en la

replicación del ADN, cada una con una actividad específica: α, β, γ, δ y ε. La polimerasa α (ADNpol α), también llamada primasa, inicia la síntesis del ADN mediante la formación de un cebador ARN. Las polimerasas δ y ε (ADNpol δ y ADNpol ε) son responsables de la mayor parte de la elongación de ambas hebras del ADN. La polimerasa β (ADNpol β) no interviene en la replicación y está involucrada en la reparación de errores o daños en el ADN. Es importante mencionar que las polimerasas α, β, δ y ε están involucradas en la replicación del ADN nuclear. La polimerasa γ (ADN pol γ) lleva a cabo la replicación del ADN mitocondrial. Existen otras polimerasas, como las polimerasas ζ (theta), η (eta) y ι (iota), cuya función no es muy conocida, pero se cree que están involucradas sobre todo en mecanismos de reparación y recombinación. De las 5 polimerasas, sólo tres tienen la actividad de exonucleasa-3’ (pol δ, γ y ε), esto es, son capaces de corregir los errores cometidos al incorporar los nucleótidos a la hebra que se está sintetizando, eliminan el nucleótido equivocado y añaden el correcto. Ninguna ADN polimerasa en eucariotes presenta actividad de exonucleasa-5’. En procariotes la ADN pol I presenta este tipo de actividad. A diferencia de lo observado en eucariotes, en la maquinaria para la replicación de los procariotes, sólo tres enzimas participan en la síntesis del ADN. La polimerasa I es la única que tiene actividad de exonucleasa de 5’ a 3’. En el cuadro 4-2 se resumen las propiedades de la ADN polimerasa en eucariotes y en el 4-3, las de procariotes.

Caracterizticas generales carácter semiconservador La síntesis de las cadenas de ADN durante la replicación se lleva a cabo en dirección 5’ → 3’ tanto en eucariotes como en procariotes. Solamente el carbono de la posición 3’ de la pentosa posee un radical hidroxilo (OH) libre, con el que puede formar un nuevo enlace fosfodiéster con otro desoxirribonucleótido y formar así la hebra creciente de ADN; por esta razón, la cadena de ADN sólo puede crecer en dirección 3’. A este proceso se le llama polimerización, que consiste en la unión de un dNTP (desoxirribonucleó tido) complementario a la hebra molde según la Ley de Char - gaff (véase el capítulo 1). La replicación del ADN cuenta con tres características que la definen y permiten entender el proceso: semiconservadora, bidireccional y antiparalela Semiconservadora: Se refiere a que en cada replicación una molécula de ADN recién sintetizada conserva una de las cadenas originales y la otra es sintetizada de novo. Anteriormente existían tres teorías que trataban de explicar el proceso de la replicación; se decía que podía ser: semiconservadora, conservadora y dispersora o dispersante. • Semiconservadora (modelo correcto). En cada una de las moléculas hijas se conserva una de las cadenas originales. • Conservadora. Se sintetiza una molécula totalmente nueva, copia de la original, por lo que tras la duplicación quedan, por un lado, las dos hebras antiguas juntas y, por otro, las dos hebras nuevas. • Dispersora o dispersante. Las cadenas hijas constan de fragmentos de la cadena antigua y fragmentos de la nueva....


Similar Free PDFs