Solucionario mecanica de fluidos merle c potter david c wiggert 3ed PDF

Title Solucionario mecanica de fluidos merle c potter david c wiggert 3ed
Author Mateo Segura
Course Mecánica de los Fluidos A
Institution Universidad de Buenos Aires
Pages 178
File Size 3.6 MB
File Type PDF
Total Downloads 28
Total Views 120

Summary

Solucionario de la tercera edicion del libro de potter...


Description

http://www.ĞůƐŽůƵĐŝŽŶĂƌŝŽŶĞƚ

/,%52681,9(5,67$5,26 8369 N/m

2.86

V

W water

S

water

d3

x

+ 5.1

or S d3.

x

10-5

2 x

5 x

d/ 2

0.

> 0.

< 1435 N/m3 W

V

water

water

S

water

d3

S d3.

water

4 1 1 S d / 12 (d / 2 Sd / 2) d ( ). GM 3 12S 2 2 Sd If GM = 0 the cube is neutral and 6S2 – 6S + 1 = 0. 6 36 24 S = 0.7887, 0.2113. 12 The cube is unstable if 0.2113 < S < 0.7887. Note: Try S = 0.8 and S = 0.1 to see if GM 0. This indicates stability.

2.87

16 9 16 4 = 6.5 cm above the bottom edge. 16 16 4 9. 5 16 8. 5 16S A 4 = 6.5 cm. 8 2 8 SA 16 .5

As shown, y G

27

h = Sd.

G C

h

130 + 104 SA = 174 + 64 SA . 2.88

SA = 1.1.

4 8 1 8 7 = 4. x 16 1 8 4 8 16 8 8 16 8 8 12 . 16 4 . 5 8 1 15 . 8 7 For G: y = 4.682. 1.2 16 . 5 8 1. 5 8

a) y

16

x

12 . 16 .5 8 4 1.5 8 4 1. 2 16 . 5 8 1.5 8

4

= 2.5.

= 2.364. 0.136 C G

G must be directly under C. .136 . =11.3 . tan .682

1 1 2 3.5 4 2 2 2 2 2 2 b) y = 2. x = 1.25 4 2 2 4 2 2 . 2 .5 4 1.5 4 For G:y 1.2 4 2 .5 1 1 .5 7 = 2.34. x 12 = 1.182 . . . 12 4 5 2 15 2 1. 2 4 . 5 2 1. 5 2 .068 . y = 0.34, x = 0.068. tan = 11.3 . .34 4 2 2

2.89

The centroid C is 1.5 m below the water surface. Using Eq. 2.4.47: GM The barge is stable.

2.90

2.91

3 l 8 / 12 1.5 1.777 1.5 l 8 3

0.277

0.

8 .485 3.414 1697 . 1 = 1.8 m. CG 1.8 1.5 = 0.3 m. .485 . 8 16 97 3 Using Eq. 2.4.47: GM l 8.485 / 12 . 3 1.46 . 3 116 . . Stable. 34.97l y

(A)

p plug Fplug

2.92

CG = 1.5 m.

2000 0 p plug A

h

2000 0 6660 (1.2

24070

0.02

2

5 ) 9.81

24070 Pa .

30.25 N

20 H . H = 8.155 m. pmax = 9810 (8.155 + 2) = 99 620 Pa 9.81 4 b) pmax = (g + az) h = 1000 (9.81 + 20) 2 = 59 620 Pa c) pmax = 1.94 60 (–12) – 1.94 (32.2 + 60) (–6) = 2470 psf or 17.15 psi d) pmax = 1.94 (32.2 + 60) (–6) = 1073 psf or 7.45 psi

a) tan

28

0.682

2.93

2.94

z The air volume is the same before and after. A h 10 0.5 8 = hb/2. tan . .9 81 b h 9 .81 h . h = 2.856. Use dotted line. 4 B 2 10 1 2. 5w 2.5 2.452 4. w = 0.374 m. 2 a) pA = –1000 10 (0 – 7.626) – 1000 9.81 2.5 = 51 740 Pa or 51.74 kPa b) pB = –1000 10 (0 – 7.626) = 76 260 Pa or 76.26 kPa c) pC = 0. Air fills the space to the dotted line.

Use Eq. 2.5.2: Assume an air-water surface as shown in the above figure. a) 60 000 = –1000 ax (0–8) – 1000 4=

h 2 9 .81 2 ax

9.81 0

60 = 8 ax + 24.52 – 9.81

a 2x – 10.1 ax + 19.67 = 0

8a x . 9.81

2 a x – 5.1 ax + 1.44 = 0

2.5

2 a x – 7.6 ax + 8.266 = 0

ax – 4.435 = 1.1074

ax .

8ax . 9. 81

8 ax . ax – 1.31 = 1.574 19. 81 ax = 0.25, 4.8 m/s2

c) 60 000 = –1000 ax (–8) – 1000 (9.81 + 5) (–2.5 + 60 = 8 ax + 37.0 – 14.81

8a x 9.81

ax = 2.64, 7.46 m/s2

b) 60 000 = –1000 ax (–8) – 1000 (9.81 + 10) 60 = 8 ax + 49.52 – 19.81

2.5

ax .

8 ax ). 14. 81

8 ax . ax – 2.875 = 1.361 14.81 ax = 1.32, 6.28 m/s2

ax .

2.95

a) ax = 20 .866 = 17.32 m/s2 , az = 10 m/s2 . Use Eq. 2.5.2 with the peep hole as position 1. The x-axis is horizontal passing thru A. We have pA = –1000 17.32 (0 – 1.232) – 1000 (9.81 + 10) (0 – 1.866) = 58 290 Pa b) pA = –1000 8.66 (0 – 1.848) – 1000 (9.81 + 5) (0 – 2.799) = 57 460 Pa c) The peep hole is located at (3.696, 5.598). Use Eq. 2.5.2: pA = –1.94 51.96 (0 – 3.696) – 1.94 (32.2 + 30) (0 – 5.598) = 1048 psf d) The peep hole is located at (4.928, 7.464). Use Eq. 2.5.2: pA = –1.94 25.98 (–4.928) – 1.94 (32.2 + 15) (–7.464) = 932 psf

2.96

a) The pressure on the end AB (z is zero at B) is, using Eq. 2.5.2, p(z) = –1000 10 (–7.626) – 1000 9.81(z) = 76 260 – 9810 z

29

b h

w 1

C

x

2 .5

( 76 260 9810 z)4 dz = 640 000 N or 640 kN

FAB 0

b) The pressure on the bottom BC is p(x ) = –1000 10 (x – 7.626) = 76 260 – 10 000 x . 7 . 626

(76 260 10 000 x )4dx = 1.163

FBC

106 N or 1163 kN

0

c) On the top p(x ) = –1000

10 (x – 5.174) where position 1 is on the top surface:

5 . 174

( 51 740 10 000 x) 4 dx = 5.35

Ftop

105 N or 535 kN

0

2.97

FAB

a) The pressure at A is 58.29 kPa. At B it is pB = –1000 17.32 (1.732–1.232) – 1000 (19.81) (1–1.866) = 8495 Pa. Since the pressure varies linearly over AB, we can use an average pressure times the area: 58 290 8495 1.5 2 = 100 200 N or 100.2 kN 2

z

x

b) pD = 0. pC = –1000 17.32 (–.5–1.232) 1000 19.81(.866–1.866) = 49 810 Pa. 1 FCD 49 810 1.5 2 = 74 720 N or 74.72 kN. 2 58.29 4981 . c) pA = 58 290 Pa. pC = 49 810 Pa. 1.5 = 81.08 kN. FAC 2

2.98

Use Eq. 2.5.2 with position 1 at the open end: a) pA = 0 since z2 = z1. pB = 1000 19.81 0.6 = 11 890 Pa. pC = 11 890 Pa. b) pA = –1000 10 (.9–0) = –9000 Pa. pB = –000 10 (.9)–1000 9.81(-.6) = –3114 Pa pC = –1000 9.81 (–.6) = 5886 Pa.

z 1

C

c) pA = –1000 20 (0.9) = –18 000 Pa. pB = –1000 20 0.9–1000 19.81( 0.6) = –6110 Pa. pC = 11 890 Pa 25 d) pA = 0. pB = 1.94 (32.2-60) = 112 psf. pC = –112 psf. 12 37.5 e) pA = 1.94 60 = 364 psf. 12 37.5 25 pB = 1.94 60 – 1.94 32.2 = –234 psf. 12 12

30

A

B

x

pC = –1.94

32.2

25 = 130 psf. 12

37. 5 = 182 psf. 12 37 .5 pB = –1.94(–30) – 1.94 62.2 12 25 pC = –1.94 62.2 = 251 psf. 12

f) pA = 1.94

2.99

30

25 = 433 psf. 12

Use Eq. 2.6.4 with position 1 at the open end: 50 2 = 5.236 rad/s. 60 2 a) p A 1000 5.236 (.6 1.5) 2 = 11 100 Pa. 2 1 pB 1000 5.2362 .92 + 9810 .6 = 16 990 Pa. 2 pC = 9810 .6 = 5886 Pa. 1 1000 5.2362 0.62 = 4935 Pa. 2 p B 1 1000 5.2362 0.62 + 9810 0.4 = 8859 Pa. 2 pC = 9810 0.4 = 3924 Pa.

b) p A

c) p A pB

1 2 1 2

1.94 1.94

pB

1 2 1 2

5.236

2

37. 5 12 37. 5 12

2

= 259.7 psf. 2

62.4

25 = 389.7 psf. 12

25 = 130 psf. 12

pC = 62.4 d) p A

5.236

2

2

2

1.94

5.236

1.94

5.2362

pC = 62.4

22. 5 = 93.5 psf. 12 2 15 = 171.5 psf. 22. 5 + 62 .4 12 12

15 = 78 psf. 12

31

z 1

C

A

B

r

2.100 Use Eq. 2.6.4 with position 1 at the open end. a) p A 1 1000 102 (0 – 0.92 ) = –40 500 Pa. 2 pB = –40 500 + 9810 0.6 = –34 600 Pa. pC = 9810 0.6 = 5886 Pa. b) p A 1 1000 102 (0 – 0.62 ) = –18 000 Pa. 2 pB = –18 000 + 9810 0.4 = –14 080 Pa. pC = 9810 0.4 = 3924 Pa. c) p A

1 2

102 0

1.94

1 2

102

1.94

pB = –341 + 62.4

22.52 12 2

r

C

B

= –947 psf.

25 = –817 psf. 12

pB = -947 + 62.4 d) p A

37.52 144

z A

1

pC = 62.4

25 = 130 psf. 12

pC = 62.4

15 = 78 psf. 12

= –341 psf.

15 = –263 psf. 12

2.101.1Use Eq. 2.6.4 with position 1 at the open end and position 2 at the origin. Given: p2 = 0. 1 1 1000 2 (0 – 0.452 ) – 9810 (0 – 0.6). = 7.62 rad/s. a) 0 = 2 z 1 2 2 1000 (0 – 0.3 ) – 9810 (0 – 0.4). = 9.34 rad/s. b) 0 = 2 2 25 . 1 18. 75 r = 7.41 rad/s. – 62.4 1.94 2 0 c) 0 = 2 12 2 12 1 d) 0 = 2

1.94

2

11.252 – 62.4 12 2

15 . 12

= 9.57 rad/s.

2.102 The air volume before and after is equal. 1 2 r02 h = 0.144. 6.2 2. . 0r h 2 a) Using Eq. 2.6.5: r02 52 / 2 = 9.81 h h = 0.428 m pA = 1 1000 52 0.62 – 9810 (–0.372) 2 = 8149 Pa. b) r02

7 2 / 2 = 9.81 h. h = 0.6 m.

pA =

1000 2

72

0.62 + 9810

0.2 = 10 780 Pa.

32

z

h

A

r0

r

c) For

= 10, part of the bottom is bared. .26 .2 1 r02 h 1 r12 h1 . 2 2 Using Eq. 2.6.5: 2 2 2 2 r0 r1 h1 . h, 2g 2g 2g 2 2g 2 h h 0 144 . or 2 2 1

h2

z

r0 h A

r

h1

0.144 10 2 . 2 9.81

h12

Also, h – h1 = 0.8. 1.6h – 0.64 = .7339. h = 0.859 m, r1 = 0.108 m. pA = 1 1000 102 (0.62 – 0.1082 ) = 17 400 Pa. 2 0 .144 20 2 . 1.6h – .64 = 2.936. h = 2.235 m. d) Following part (c): h 2 h12 2 9.81 pA = 1 1000 202 (0.62 – 0.2652 ) = 57 900 Pa r1 = 0.265 m 2 2.103 The answers to Problem 2.102 are increased by 25 000 Pa. a) 33 150 Pa b) 35 780 Pa c) 42 400 Pa 2.104 p (r ) p (r ) p(r )

1 2r2 2 500 2 r2 2

500 (r

d) 82 900 Pa

g[ 0 (.8 h)].

dA = 2 rdr

9810(. 8 h ) 2

if h < .8. if h > .8.

r ) 2 1

dr

.6

a) F

p 2 rdr

3 12 ( 500r

2

3650r dr ) = 6670 N.

0

(We used h = .428 m) .6

b) F

p 2 rdr

r3 (24 500

2

r dr ) = 7210 N. (We used h = 0.6 m) 1962

0 .6

c) F

p 2rdr

3 (50 000r(

2

2 .108r dr ) = 9520 N. (We used r1 = 0.108 m)

. 108 .6

d) F

p 2 rdr

(200 000r( 3

2

.2652 r dr ) = 26 400 N. (r1 = 0.265 m)

. 265

33

CHA PTER 3

Introduction to Fluids in M otion 3.1 pathline streamline

3.2

Pathlines:

streakline

Release several at an instant in time and take a time expo sure of the subsequent motions of the bulbs.

Sreakline: Co ntinue to release the devises at a given location and after the last one is released, take a snapshot of the “ line” of bulbs. Repeat this for several different release locations for additional streaklines. 3.3 streakline pathli ne t =0

hose tim e t

boy

3.4 y

streakline at t = 3 hr pat hline t = 2 hr

streamline s t = 2 hr x

34

3.5

dx t2 2 dt t2 2t c 1

a) u

x

2 xy

2

b) x

t2

x

3.6

3.7

v dr

uiˆ

c1

vjˆ

2

x

4.

4) 8

y 8x

12y

parabola.

0.

v v (V dr ) z

wkˆ

udy vdx

using iˆ,

kˆ ˆj . iˆ





Lagrangian: Several college students would be hired to ride bikes around the various roads, making notes of quantities of interest.

a) At t b) At t At t c) At t

Several college students would be positioned at each intersection and quantities w ould be recorded as a function of time.

2an d ( 0, 0, 0) V

(D )

22

2m / s .

2an d ( ,1 2, 0) V 32 22 2 a nd (0,0,0 ) V 0. 2 2and ( 1 , 2, 0) V ( 2) ( 2an d ( 0, 0, 0) V

At t

( 4)2

2 d ( , 1 , 2)0 V an ( 51.4

2

3. 606m / s. 8)2

8. 246m / s.

4m / s .

2 (

)42

)24

(

6 / s. m

10 5 jˆ)

A simultaneous solution yields nx

(They must

4/5 and n3/5. y

both have the same sign. 3.10

(35, 25) 39.8o

8 , and c 2

dxiˆ dy ˆj d z ˆk

At t

3.9

(27, 21)

parabola.

4y

c1 . y

Eulerian:

3.8

streamlines t=5s

y

2

2

4 2(

2xy

v V

y

2t

y 2

dy t2 dt y t2 c

2 y

y x

v

a) cos

v V n$

nx

v V i$ / V 0.

(3$i

2 , ny 13

(1 2) /

32

2$j ) ( n x i$ n y $j )

3 or n$ 13

22

33 .69 o

0.832 . 3n x n 2x

0.

2n y 0 n y2 1

1 ( 2i$ 3 j$ ). 13

35

ny n2x

3 nx 2 9 2 nx 1 4

v V i$ / V

b) cos

v V n$

ny

1 , nx 17

c) cos

v V i$ / V

5

v a) V

89

v dr (x

2)dy

Integrate: t

2(1 2 ln3) t x 2 nl x v b) V

drv

xydy

( 8)2

0.6202.

8 $j ) ( n x i$ n y $j )

5n x n 2x

8 89

(x 2

89

( 8i$

xyi$

2y 2 j$

64 2 ny 25

0.

dy . y

2

dy j$)

C.

.0

0 or

2 )4i$ y tj$

2 (x

y 2 tdx

Integrate:

t tan 2

0 .9636 .

nx

8n y 0 n y2 1

dy 2 dx . x y ln( y / C). 2ln( 1) l n( 2 / C). 2y n y 2 x 2. l ( / ).

2 y 2 dx

.0

51.67 o

dx ( i $ dy j $ )

(dxi$

1

0

or

x 2

C

yt tan

1

(dx i$ dy j$ )

x

4 1 . y

x 2

0.

dy . y2

tdx 2

2 tan 2

0 .9636

36

2

4n y n y2 1

$j).

5j$ ).

xdx dy . t x 2ln x x 2 2 C. C = 0.8028. 2 y 0.8028

4) dy

C

1

xdx x 2

0 or t

xtdx

0.

or n$

2i) $ xtj $

x(

.0

drv

0.

52

Integrate: 2lnx C 2. l nx 2

v c) V

n y $j)

104 o nx 16n 2y

0.2425. 2 n x 8 ny 0 n 2x n y2 1

1 ( 4 $i 17

, nx

0.

( 8) 2

4 or n$ 17

5/

( 5$i

0.

ny

3.11

( 2 $i 8 $j) ( n x$i

0.

v V n$

( 2) 2

2/

1

1 2

C

1 . 2

8 ny 5 n 2y 1

3.12

v v V V u v t x

v a

(C )

2

a

3.13

v v DV V a) u Dt x v v V V b) u v x y v v V V c) u v x

2

8

v V v y

w

16

v V w z v V t v

v V w z v

y

v v V V w y z

V

V t

z

2xy ( 2yiˆ)

v

v

V

V

v

x

w

y

v

v

V

V t

z

16iˆ 8 iˆ 16 jˆ.

4x i $ 4y j $ = $i8

4$j

17.89 m/s v V =0. t x2 ( 2i $ ) 2y (2j $ ) x 2t ( 2xt $i

2 yt$j)

$) 2 xyt(2 xtj$ 2 ztk

x i ( $ 2yzj $) 2xyz 2 ( xzj $ )tz

= xi$ ( 2yz 4x 2 yz 2 = 2i$ 114 j$ 15k$

v

1 2

3.14

v a)

v b) c)

v v

d) 3.15

3.16

u x

xx

1 xy

yz

2 xyj

2 ( xyj $ tk $) zk $

2xyzt) $j ( zt 2

z) k$

w v $ 1 u w $ 1 v u $ i j k. 2 2 y z z x x y 1 u$ k 20 yk$ = 20 k$ 2 y 1 1 1 ( 0 0)i$ (0 0 ) $j (0 0 ) k$ = 0 2 2 2 1 1 1 ( 2zt 0) i$ ( 0 0) $j (2 yt 0 ) k$ = 6 i$ 2 k$ 2 2 2 1 1 1 ( 0 2xy )i$ (0 0 )j$ ( 2 yz 0 )k$ = 2i$ 3k$ 2 2 2

The vorticity v a) = 40i$ a)

x2 $i

100$ j 54$ k

68$ i

2yzk d) u

y 2 ( 2 xiˆ 2 yjˆ)

v 2 . Using the results of Problem 3.7: v v d) v = b) 0 c) = 12 i$ 4 k$

v

0, u

v

2

y

x

1 2

v

w

z

y

v y

0,

zz

20y

20,

xz

yy

w z 1 u 2 z

0. w

0 0.

rate - of strain

37

0,

x

20 0

20

0

0

0

0

0

4i$ 6k$

b)

c)

xx

2,

yy

2,

zz

0.

xy

0,

xz

0,

yz

0.

xx

2 xt

xy

8,

2 xt

yy

1 yt (2 ) 2

2,

d)

xx

xy

1,

2 0 2 xz

yy

1 ( 2 yz ) 2

8 6

3,

3

10

40 cos r2

1 10 r 10

a

r

0,

a) ar

1 (0) 2 0

t

2.

0,

yz

10

sin 2

(10

80 sin r3

1 ( 2xy ) 2

2.

40 sin r2 r

1

40 ( sin ) r2

80 cos r3

1 r v =0 z

2.5)( 1)1.25 ( 1) = 9.375 m/ s2. 10

1600 sin cos r4

0,

10

6.

2

At (4, 180 ) 3.18

zz

80 cos r3

40 cos r2

1 100 r a = 0. b)

40 r2

1 zt (2 ) 2

yz

12 2 2 2

0 a) ar

0,

4.

6 4

xz

rate-o f strain = 3

2 yt

zz

12,

1

3.17

8,

1 (0) 2 2 0

xz

8 rate-of strain =

2 0 0 rate-of strain = 0 2 0 0 0 0

10

240 cos r4

=0

40 sin r2 r


Similar Free PDFs