Solucionario Potter Cuarta edión POTTER PDF

Title Solucionario Potter Cuarta edión POTTER
Author Serge Domínguez
Course Mecánica De Fluidos
Institution Universidad Autónoma del Estado de México
Pages 10
File Size 983 KB
File Type PDF
Total Downloads 275
Total Views 372

Summary

INSTRUCTOR'S SOLUTIONS MANUALTO ACCOMPANYMECHANICS of FLUIDSnullFOURTH EDITIONMERLE C. POTTER Michigan State UniversityDAVID C. WIGGERT Michigan State UniversityBASSEM RAMADAN Kettering UniversityContents Chapter 1 Basic Considerations Chapter 2 Fluid Statics Chapter 3 Introduction to Fluids in Moti...


Description

Instant download and all chapters Solutions Manual Mechanics of Fluids 4th Edition Potter, Wiggert, Ramadan https://testbankdata.com/download/solutions-manual-mechanics-fluids-4th-edition-potter-wiggert-r  madan/     

INSTRUCTOR'SSOLUTIONSMANUAL  

TOACCOMPANY  

 BASSEMRAMADAN KetteringUniversity

Contents Chapter 1

Basic Considerations

1

Chapter 2

Fluid Statics

15

Chapter 3

Introduction to Fluids in Motion

43

Chapter 4

The Integral Forms of the Fundamental Laws

61

Chapter 1/ Basic Considerations

CHAPTER 1 Basic Considerations FE-type Exam Review Problems: Problems 1-1 to 1-14. 1.1

(C )

m = F/a or kg = N/m/s2 = N.s2/m.

1.2

(B )



[τ du/dy] = (F/L2)/(L/T)/L = F.T/L2.

We used kg = N·s /m 1.10

(C )

1.11

(C )

m

pV RT

800 kN/m2 0.1886 kJ/(kg

3

1

Chapter 1 / Basic Considerations 1.12

(B )

5 We assumed the density of ice to be equal to that of water, namely 1000 kg/m3. Ice is actually slightly lighter than water, but it is not necessary for such accuracy in this problem. 1.13

(D )

For this high-frequency wave, c

RT

Chapter 1 Problems: Dimensions, Units, and Physical Quantities 1.14

Conservation of mass — Mass — density

1.17

a) L = [C] T2. [C] = L/T2 b) F = [C]M. [C] = F/M = ML/T2 M = L/T2 3 2 2/3 c) L /T = [C] L L . [C] = L3 / T L2 L2 /3 L1 /3 T Note: the slope S0 has no dimensions.

1.18

a) m = [C] s2. b) N = [C] kg. c) m3/s = [C] m2 m2/3.

[C] = m/s2 [C] = N/kg = kg m/s2 kg = m/s2 [C] = m3/s m2 m2/3 = m1/3/s

2

Chapter 1/ Basic Considerations 1.19

a) pressure: N/m2 = kg m/s2/m2 = kg/m s2 b) energy: N m = kg

m/s2

m = kg m2/s2

c) power: N m/s = kg m2/s3 kg m 1 d) viscosity: N s/m2 = 2 s 2 kg / m s m s N m kg m m e) heat flux: J/s = kg m 2 / s 3 s s s2 J N m kg m m m2 / K s2 f) specific heat: kg K kg K s2 kg K m

m

f) 4 slug/min = 4 14.59/60 = 0.9727 kg/s g) 500 g/L = 500 10 3 kg/10 m 500 kg/m3 h) 500 kWh = 500 1000 3600 = 1.8 109 J 1.25

1.26

a) F = ma = 10 40 = 400 N. b) F W = ma. c) F W sin 30 = ma.

F = 10 F = 10

40 + 10 9.81 = 498.1 N. 40 + 9.81 0.5 = 449 N.

The mass is the same on the earth and the moon: 60 1.863. m= Wmoon = 1.863 5.4 = 10.06 lb 32 .2

3

Chapter 1 / Basic Considerations

1.27

a)

m

4.8

or 0.00043 mm

0.184

b)

m

4.8

or 0.077 mm

0.00103

c)

m d

4.8

or 3.9 mm

0.00002

Pressure and Temperature 1.28

Use the values from Table B.3 in the Appendix.

0.512 ( .488) (628 2 785 + 973) = 873 psf 2 0.512 ( .488) ( 48 + 2 30.1 12.3) = 21.4 F T = 12.3 + 0.512 ( 30.1 + 12.3) + 2 Note: The results in (b) are more accurate than the results in (a). When we use a linear interpolation, we lose significant digits in the result.

b) p = 973 + 0.512 (785

1.32

T = 48 +

33,000 35,000

973) +

( 65.8 + 48) = 59 F or ( 59

4

32)

5 = 50.6 C 9

Chapter 1/ Basic Considerations

1.33

1.34

p=

26.5 cos 42 Fn = 1296 MN/m2 = 1296 MPa. = A 152

Fn

Fn2

F= N

Ft

= tan

1

2

= 2.400 N.

0.0004 =0.0095 2.4

Density and Specific Weight

1.39

S=

V

. 1.2

10/ V . 1.94

V = 4.30 ft3

5

Chapter 1 / Basic Considerations Viscosity 1.40

Assume carbon dioxide is an ideal gas at the given conditions, then 200 kN/m3 0.189 kJ/kg

p RT

W V

mg V

g

From Fig. B.1 at 90°C,

Vpiston

, so that the kinematic viscosity is

mpiston g Dcylinder 2

Dpiston

DL

0.350 kg 9.81 m/s2 0.1205 2 where we used N = kg·m/s2.

6

m

Chapter 1/ Basic Considerations 1.42

du dy From the given velocity

The shear stress can be calculated using distribution, u(y)

y

du dy

y

From Table B.1 at 10 C, du dy

so, at the lower plate where y = 0,

y

At the upper plate where y = 0.05 m,

1.46

Use Eq.1.5.8: T =

2

h

power =

3

2

3

= T 550

2000 60 0.01 /12

2.74 209.4 = 1.04 hp 550

7

= 2.74 ft-lb.

Chapter 1 / Basic Considerations

1.47

Fbelt =

du A dy

10 (0.6 0.002

power =

1.48

F V 746

15.7 10 = 0.210 hp 746

Assume a linear velocity so element shown, dT = dF

4) = 15.7 N.

du dy

r h

r = dA

Due to the area du 2 r dr dy

r=

dr r

r.

C

/

1.51 40

= 2.334

0.001

/293

0.000357

/353

10 6 e1776/313 = 6.80

A = 2.334

10 4 N.s/m2

8

10 6, B = 1776....


Similar Free PDFs