Tensile Test Lab Report PDF

Title Tensile Test Lab Report
Author Mina Kerlos
Course Strength Of Materials
Institution Essex County College
Pages 17
File Size 653.2 KB
File Type PDF
Total Downloads 12
Total Views 153

Summary

EXPLANATION OF STEPS OF LAB WHAT WE BENEFIT FROM THIS LAB IN OUR LIFE...


Description

Essex County College Division of Engineering Technologies & Computer Sciences ENR 221-001 Strength ofMateria1s Professor Acquaye, Theophilus A. Lab Report: # 1 MINA IBRAHIM

Tension Test

(above: Terco MT3017 Tensile/Brinell Testing Machine) :トみ、ツも江

〔0 ア・・1

をー

を吐い、

Remarks: c ん{トら

oル

O'.æRAU- LENGTH

-REDUCED- SECTION

Procedure the Tensile Test following the below steps:

Terco MT 3017 Tensile/BrineIl Testing Machine Setup:

1. Wind the pressure cylinder back to zero by turning anticlockwise 2. Insert and fix Test piece by screwing into lower and upper jaws 3. Turn the Dial Gage on 4. Raise the column to push on Dial Gage plunger until a deformation of about 10mm is indicated 5. Set the red pointer (which reads the maximum force) of the pressure gauge to zero 6. Set the dial gauge to zero MT3047 Data Acquisition Setup:

1. Turn on the computer and every component of the data acquisition system 2. Double click on the MT 3047 Tensile/BrineIl Testing Software 3. Then select the meter icon:

Following graphic will appear:

Tension Test: Obiectives:

O The objective of this experiment is to observe the stress-strain relationship for several standard materials such as aluminum, steel, brass by performing a tensile test.

Equipment:

• Terco MT 3017 Tensile / Brinnell Machine. • Data acquisition system Computer generated software, dial gage, strain gage). • Specimen of steel, brass and aluminum. Procedure: This lab's procedure was as follows: First we prepared the Terco Mt3017 testing machine and that is by initializing all gauges to zero values. Second we had to turn the lever counter clock wise in order to lower the pressure. Third inserting the test piece (Aluminum, Brass or Steel) and screwing it in both lower and upper clamps. Fourth, we turn the digital Dial Gage on and pushing the plunger in till we reach a maximum deformation of about 1 Omm as the professor indicated making sure that our value is positive. Fifth step, we set the red pointer of the pressure gage to zero and initializing the values of the dial gage to zero as well. Sixth step, we turned on our computer generated software and followed instruction until it was ready to record data. Seventh step, we gave the specimen a little pressure in order to avoid all the zeros in our data table than we had to rest the Dial gage to zero again. Eight step, this step required two group members, one had to click on the record button while the other starts cranking the machine clockwise exerting pressure on the specimen until failure. Ninth step, we collected the data from the software along with the Force vs. Deformation graph for each specimen, and shared the information along other fellow students.

Results: Standard Specimens:

O Stress-Strain Diagram expresses a relationship between a load applied to a material and the deformation ofthe material, caused by the load. Stress-Strain Diagram is determined by tensile test.. In these specimens we used Lo = 5 * diameter. The specimen deformation (strain) is t e ratio of the increase of the specimen gauge length to its original gauge length:

Tensile stress is the ratio of the tensile load F applied to the specimen to its original cross-sectional area So:

o=F/So

% Error: Aluminum Strain: 0.0496

Stress: :387.084 (10% N/mA2)

tensile stress = 387.084 / 0.064 = 64 Mpa (founded) , tcnsilc strain

Actual value of E: 70 Mpa Percent error = (estimate - actual) / actual * 100 IAbsolute valuel = (64 - 70) / 70 = 0.0857 * 100 = 8.5 % Error.

Brass Same procedure was used to obtain a percent error of: 7.6%

Steel Same procedure was used to obtain a percent error of: 8.2 %

Conclusion: Following all the lab procedures, step by step avoiding any mistakes and human errors we were able to obtain stress vs. strain charts. Our results were close to the actual values looking at the low percent errors we ended up with in this lab of tensile stress was a success. We were able to test three different specimens are illustrate the difference between their stresses and strains

ALtn,flNUM Msr#

Force

Deformation (mm)

Average Normal Strain (mm/mm)

Average Normal Stress

(NfPa)

8

0.0

0.02

0.001

o.ooo

9

0.0

0.03

0.001

o.ooo

10

0.0

0.05

0.002

o.ooo

11

1.8

0.07

0.003

210.855

12

2.1

0.09

14

2.8

0.14

15

3.4

0.17

16

3.9

0.21

0.004

245.997 13

2.4

0.11

0.004

281.140

0.006

327.996

0.007

398.281

0.008 456.852

17

4.5 0.24 O.OIO 527.137 18 4.9 0.26 19

5.70.31

20

6.2 6.3

0.34

22

6.8

0.36

23

7.40.43

24

7.40.52

25

7.4

26

7.60.62

27

7.6

0.012

667.707

0.014

726.277

0.014

737.991

0.014

796.562

0.017

866.847

0.021

866.847

0.022

866.847

0.025

890.275

0.030

890.275

0.034

901.989

0.039

901.989

0.043

901.989

0.045

901.989

0.047

913.704

0.052

925.418

0.056

925.418

0.059

925.418

0.56

0.74

28

7.7

0.85

29

7.7

0.97

30

7.7

1.07

31

7.7

1.13

32

7.8

1.18

33

7.91.31

34

7.9

35

7.9

36

7.91.59 1.68

573.993

0.34

21

37 7.9

0.010

1.41

0.064

40

8.0 1.93

41

7.9 2.04

42

8.0 2.11

43

8.0 2.20

44

7.9 2.28

45

7.8 2.38

925.418 38

0.074

8.0

1.77

0.071

937.132

0.067

925.418 39

8.0

1.85

937.132 0.077

937.132

0.082

925.418

0.084

937.132

0.088

937.132

0,091

925.418

46

0.095

913.704

0.099

890.275

7.6 2.48

STRESS vs STRAIN / Aluminum 1000.ooo 900.000 800.000 700.000 600.000 500.000 400.000 300.000 200.000 100.000 o.ooo o.ooo 0.040

0.020 0.060 0.080

0.100

0.120

Strain (mm/mm)

STEEL Isr#Force ( kN)Deformation (mm) Stress (MPa) 1 3

0.0

4

o.ooo 2 0.0

0.01 0,0004

0.0

Avg . Normal Strain (mm/mm) Avg. Normal 0.01 0.0004

0. 01

o.ooo

0,0004

0.0 0.01 0.0004 o.ooo 5 0.0 0.01 0.0004 o.ooo

0.01 0.0004

7

0. 0

8

1 . 5 0.03 0.0012

236.822

9

1 . 9 0. 04 0.0016

299.975

10

2 .3

0.07 0.0028

363.127

11

2. 6

0. 08 0.0032

410.491 12 3.2

0,000 o.ooo 6 0. 0

o.ooo

0. 02 0,0008

0.10 0.0040

505.220 13

3.8

0. 13 0,0052 15

599.949 14 4. 6 0. 16 0.0064

5. 0 0.17 0.0068

16

5 . 6

0.19

17

6.5

0.21

7 . 3

19 20

21 22 23 24 25 26 27 28

0.25

726.254

789.407 0.0076

884.135

0,0084

1026,229

0,0100

1152.534

0.0108

1247.263

0.0116

1357.779

0,0128

1515.661

0,0140

1657.754

0.0152

1752.483

0.0168

1768.271

0.0196

1815.635

0.0228

1815.635

0.0256

1847.212

0.0300

1863,000

0.27

8 . 6 0.29 9. 6 10.5

11.1 11.2

11.5 11.5

0.32 0.35

0.38 0. 42

0.49 0.57

0. 64

11.8

0.75

37

29 30

11.8

0.84

0. 92

0.0336

31

11.9

0, 99 0.0368

32

12.0

1. 07

33

12 . 1

1.13 0.0428

1894.576

34

12. 1

1.21 0.0452

1910.364

35

12.2

1.30 0.0484

1910,364

36

12.2

1. 41 0.0520

1926.152 0.0564

1926.152

0.0596

1926.152

12.2

0.0396

1878.788

1.49 0.0616

1 . 64

0.0656

1.75

0.0700

12.4

1.79

0.0716

12.4

1.88

0.0752

12.4

1.99

0.0796

2.07

0.0828

2.13

0.0852

12.3

2.23

0.0892

1941 40

12.1

2.35

0.0940

12.0

2.46

0.0984

2.61

0.1044

1910 64 1894 76 1847 12

12.3

39 40

12.3 12.3

41 42

47

1878.788

1.54

38

45

1863.ooo

12.3 12.4

49

1941 40 1941 40 1941 40 1957. 9 1957. 9 1957. 29 1941. 40 1957 29

50

11.6

2.69

0.1076

1831 23

51

11.3

2.79

0.1116

1784 59

52

10.9

2. 94

0.1176

1720 07

53

10.5

3.09

0.1236

1657 54

54

10.0

3.23

0.1292

1578 13

55

9.3

3.36

0.1344

1468 96

OPPER

fsr#Force ( kN) Deformation (mm) Avg. Normal Strain (mm/mm) Stress (MPa)o.ooo 0.01 0.0004

5

0.0 6

0.0 0.03

7

Avg . Normal

0.06

0.0024

0.0012 311.698 0.0032

8

2.3

0.08

9

2. 6

0.10 0.0040

10

3.4 0.14 0.0056

623.396

11

4.1 0.18 0.0072

751.743 12 5.1

0.0088

13

5.6

o.ooo 421.709

476.715

0.22

935.095

0.25 0.0100

1026.771

0.0120

14 15

6,8

0.30

7 . 1

0.35 0.0140

1301.799

16

7.4

0.39 0.0156

1356.804

17

7.3

0.56 0,0224

1338,469

18

7.3

0. 66 0.0264

1338.469

19

7.3

0.80 0.0320

1338.469

20

7.3

0.97 0.0388

1338,469

21

7 .3

1.12 0.0448

1338.469

22

7.3

1.25 0.0500

1338.469

23

7.2

1.41 0.0564

1320,134

1246.793

24 25

7.1

1.56 0.0624

1301.799

7.0

1.71 0.0684

1283.463

26

6.9

1.88 0.0752

1265.128

27

6.8

1.97 0.0788

1246.793

28

6.6

'2.15

0.0860

1210.123

29

6.3

2.33

0.0932

1155.117

30 31

6.0

2.52 0.1008

2. 64

0.1056

32 33

5.2

2.87 0,1148

3.05

0.1220

1100.111

1045.106 953.430

861.754

BRASS Msr#

Force

Defonnation (mm) 17

0.0 0.02

0.01

Average Normal Strain (mm/mm) 0.0004 o.ooo 18 0.0

0.01

Average Normal Stress (MPa) 0.0004 o.ooo

19

0.0

0.0008 o.ooo

20

0.0 0.03 0.0012 o.ooo 21 0.0 0.04 0,0016 o.ooo 22 1.7 0.06 0.0024 259.749

23

1.7

0.06

0.0024 259.749

24

2.0

0.07

0.0028 305.587

25

220.08

0.0032 336.145

26

2.5

0.10

0.0040 381.983

27

2.8

0.12

0.0048 427.821

28

3.1

0.14

0.0056 473.659

29

3.5

0.16

0.0064 534.776

30

4.0

0.19

31

0.0076 611.173

4.3

021

0.0084 657.011 32

33

5.0 0.25

0.0100 763.966

34

5.6 0.28

0.0112 855.642

35

6.1 0.31

0.0124 932.039

36

6.7

0.36

0.0144 1023.715 37

6.9

0.0196 1100.111 39

40

7.6 0.72

7.5

4.5

0.22

0.41

0.0088 687.570

0.0164 1054.273 38

0.60

7.2

0.49

0.0240 1145.949

0.0288

1161229 41

7.6 0.80

0.0320

1161229 42

7.7

44

7.9 120

0.0480

45

8.0 1.33

0.0532

0.93

0.0372 1176.508 43

7.8

1.05

0.0420 1191.787

1207.067 1222.346

46

8.0 1.43

0.0572

47

8.1 1.56

0.0624

48

8.2 1.69

0.0676

49

8.2 1.78

0.0712 1252.905

50

8.3 1.90

0.0760

1222,346 1237.625

1252.905 1268.184

51

8.3 2.05

0.0820 1268.184

52

8.4 2.19

0.0876

53

8.4 2.33

0.0932

1283.463

54

8.4 2.41 1283,463 Msr# Force

0.0964 1283.463 Deformation (mm)

Average Normal Strain (mm/mm) Average Normal Stress (NfPa)

55

8.52.55

70

8.64.43

56

8.52.71

71

8.4 4.58

57

8.5 2.84

72

8.34.66

58

8.6 2.95

59

8.63.10 60 8.6

325

3.38 62 8.7

3.49

61

8.6

63

8.73.58

64

8.7 3.70

65

8.73.83 66 8.7

67

8.74.07

68

8.7 4.17

69

8.6 4.30

3.95

STRESS vs STRAIN

1400.000

1314.022

0.1300

1200.000 1000.000 800.000 600.000 400.000 200.000 o.ooo o.oooo

o. 1020

0.0200

0.0400

0.0600

1298.743 0.1084 1298.743

0.1136

1298.743

0.1180

1314.022

Strain (mm/mm)

Calculations: Specimen gage length = 25mm

Specimen diameter = 5mm

Stress =

0.1240

force (N) original specimen cross—sectional area (m)

elongation (mm) Strain = original speciman gage length (mm)

0.0800

1314.022

0.1352

1314.022

0.1396

1329.301

0.1432

1329.301

0.1480

1329.301

0.1532

1329.301

0.1580

1329.301 0.1628 1329.301

o. 1668

1329,301 0.1720 1314.022

0.1772

1314.022

0.1832

1283.463

0.1864

1268,184

0.1000

Brass 0.1200

0.1400

0.1600

0.1800

0.2000

Stress Modulus of Elasticity (E) =

Percentage Error =

A Strain

I Experimental E — Theoretical E I Theoretical E x 100

Theoretical E values (GPa):

Steel:

207

Copper: 125 Aluminum: 72

Brass:

97

236.822

/ .0012 = 197.351

311.698

/ .0024 = 129.874

210.855

/ .0030

70.285

108.229

/ .0024 = 108.228

197.351 / 207) * -207 / 125 129.874125 / 72) 70.28572 (1 108.228- 97 / 97 * 100 = 11.58

4.66 3.90

2.38

Experimental E values (GPa)Percentage Error (%)

Steel Copper Aluminum

Brass

Conclusion: Graph Analysis:



The test showed that the initial portion of each Stress Strain diagam for each of the four test specimens display a linearity: an increase in average normal stress is accompanied by a proportional increase in average normal strain. Thus, these four engineering materials follow Hooke's Law through their Proportional Limit and are linear elastic.



A direct result of each of these materials being linear elastic is that the mechanical property, Modulus of Elasti...


Similar Free PDFs