4 - Expanded Semiconductor Diode Biasing with Voltage Notations - Practical PDF

Title 4 - Expanded Semiconductor Diode Biasing with Voltage Notations - Practical
Course Mechanical Engineering
Institution Lyceum of the Philippines University
Pages 41
File Size 1.9 MB
File Type PDF
Total Downloads 181
Total Views 431

Summary

Download 4 - Expanded Semiconductor Diode Biasing with Voltage Notations - Practical PDF


Description

Experiment No. 4 Expanded Semiconductor Diode Biasing with Voltage Notations Objectives: At the end of this experiment, the students are expected to: 1. identify the two voltage notations involving diode circuits. 2. be familiar with the basic diode circuits. 3. know and understand the various functions and uses of diode.

Materials: Qty 1 6 1 5

VOM (volt-ohm-milliammeter) Diode (ideal, 1N5392 and BAT48) Analog Trainer Resistors (see values in the circuit in figure 1) Connecting Wires

Theories/Principles: Diode is an electronic device that allows current to flow in one direction only. Generally, diodes are classified into three categories, the signal diode, the rectifier diode and the regulator diode. When they are used in signal circuits, they are called “signal diodes”. When they are used for conversion of AC to DC, they are called “rectifier diodes” and when they are used for controlling voltage or current, they are called “regulator diodes”.

A solid-state diode has generally two electrodes, which are the cathode and the anode. Then arrow represents the anode, whereas the bar represents the cathode. The arrow and the bar are the standard symbols for a semiconductor diode showing the direction of the hole current or the conventional flow of current.

In a diode circuit, when the anode is connected to the positive terminal of the voltage source and the cathode is connected to the negative terminal of the voltage source, the diode is said to be in the forward bias condition. On the other hand, when the anode is connected to the negative terminal of the voltage source and the cathode is connected to the positive terminal of the voltage source, the diode is said to be in the reverse bias condition. Using notations, single-subscript measurement is with respect to ground while double-subscript measurement is with respect to test points or terminal pertaining to the subscripted points.

Procedures: 1. Construct the circuit of Figure 1 in livewire and multisim. 2. Using the simulation softwares above, measure the current flowing, I, and the individual voltages across the components and on different test points in the circuits using single- and double-subscript notations. 3. Compute for the current flowing, I, and the individual voltages across the components and on different test points in the circuits using single- and double-subscript notations. 4. Record the data on Table 1.

Writing Diagram:

E

F

G

D

H

C I B J A M

L

K

Circuits created using livewire

FIGURE 1

PART 1 AND 2 ( LIVEWIRE)

PART 1 AND 2 ( LIVEWIRE)

PART 3 (LIVEWIRE) !

VAB-VAM

VBA-VBM

VCA-VCM

VDA-VDM

VEA-VEM

VFA-VFM

VGA-VGM

VHA-VHM

VIA-VIM

VJA-VJM

VKA-VKM

VLA-VLM

VMA-VML

Circuits created using multisim

PART 1 AND 2 (MULTISM)

PART 3 (MULTISM)

MULTISM VAB-VAM

E

R1

D V

-14.389 +

F

D2

330Ω

VAD DC 10MOhm IDEAL 1N5392

G

R2

D3

470Ω

1N1199C

1N5392

H -

-

-11.57

V

-7.207

VAF

+

DC 10MOhm

VAH

V

-11.22

VAE

+

V

+

VAG

-6.596

+

DC 10MOhm

DC 10MOhm

V

DC 10MOhm

C

R3 220Ω

VAI +

V1 15 V

-4.717

V

I

DC 10MOhm

-

-14.389

V

VAB DC 10MOhm B

D4 1N1199C

+

SILICON 1N5392

VAJ -

+ -

-14.389

V

VAC DC 10MOhm

-4.367

V

J

DC 10MOhm

+

R4 220Ω

D5

R5 220Ω

A

-

0 +

V

VAM DC 10MOhm

M

1N5392 -

-1.878

V

VAL

+

L

K

-

DC 10MOhm

-2.489

V

VAK

+

DC 10MOhm

VBA-VBM

VCA-VCM

E

R1

D

V

0 +

G

R2

D3

470Ω

1N1199C

VCD DC 10MOhm IDEAL 1N5392

-

F

D2

330Ω

1N5392

H -

V

3.167

VCE

VCH

-

V

2.817 +

V

7.18

VCF

+

DC 10MOhm

DC 10MOhm

-

+

VCG

V

7.791

+

DC 10MOhm

DC 10MOhm R3 220Ω

C

VCI V

+

V1 15 V

9.67

I

DC 10MOhm DC 10MOhm +

V

15

B

VCB

D4 1N1199C

-

VCJ +

V

14.389

+

SILICON 1N5392

VCA DC 10MOhm

10.019

V

J

DC 10MOhm

-

R4 220Ω

14.389

+

VCM DC 10MOhm

+ V

12.509

A

V

VCL DC 10MOhm

+

11.898

-

-

V

VCK

-

DC 10MOhm

D5

R5 220Ω

1N5392

L

M

K

!

VDA-VDM E

F

D2

R1 330Ω

G

1N1199C -

1N5392 -

-

2.817

V

D3

R2 470Ω 7.18 3.167

VDE

+

V

VDF

V

VDG

+

+

DC 10MOhm

DC 10MOhm

DC 10MOhm

H VDH +

7.791

V

DC 10MOhm R3 220Ω

D VDI +

IDEAL 1N5392

9.67

V

I

DC 10MOhm +

V

0

VDC

C

-

DC 10MOhm V1 15 V

D4 1N1199C

+

VDB

15

V

-

DC 10MOhm

B VDJ +

10.019 +

14.389

VDA

SILICON 1N5392

V

V

J

DC 10MOhm

-

DC 10MOhm +

14.389

V

VDM DC 10MOhm

-

+

12.509

V

VDL DC 10MOhm

+

11.898

-

V

VDK DC 10MOhm

-

D5

R5

A 220Ω

M

!

VEA - VEM

1N5392

L

K

R4 220Ω

E

R1

F

D2

330Ω

G

D3

R2 470Ω

1N1199C

1N5392 -

-

VED

D

4.362 0.35

V

+

-

+ V

-2.82

VEG

V

+

VEF

DC 10MOhm DC 10MOhm

H VEH

DC 10MOhm

-

+

V

4.973

IDEAL 1N5392

DC 10MOhm R3 220Ω VEI -

+

-

+ V

-2.82

C

V

6.851

VEC

I

DC 10MOhm

DC 10MOhm V1 15 V

D4 1N1199C

VEB -

B

+ V

12.18

VEJ DC 10MOhm

V

+

7.201

SILICON 1N5392

+

11.569

V

VEM DC 10MOhm

9.69

V

VEL DC 10MOhm

+

9.079

-

+

11.569

+

-

VEA -

A

J

DC 10MOhm

-

220Ω

DC 10MOhm

R4 220Ω

VEK DC 10MOhm

D5

R5

V

V

1N5392

M

L

K

! VFA-VFM F D2

R1 330Ω

1N1199C -

-0.35

VFD -

-3.169

V

R2

D3

470Ω

1N5392 -

VFE DC 10MOhm

4.012

V

VFG DC 10MOhm

+

+ + V

DC 10MOhm VFH IDEAL 1N5392

-

+

4.623

V

DC 10MOhm

R3 220Ω

VFC -

-3.169

+ V

DC 10MOhm VFI +

V1 15 V

6.502

DC 10MOhm

VFB -

11.831

V

+ V

D4 1N1199C

DC 10MOhm VFJ

SILICON 1N5392

-

+

6.851

V

DC 10MOhm +

VFA -

11.22

+ V

DC 10MOhm

! VGA-VGM

11.22

V

VFM DC 10MOhm

+

9.341

-

V

VFL DC 10MOhm

+

8.73

-

-

R5

D5

220Ω

1N5392

V

VFK DC 10MOhm

R4 220Ω

E

R1

V

-4.014

VGE

+

VGD

V

1N5392

VGF

+

DC 10MOhm

+ V

-7.182

D3

-

-4.363 -

G

R2 470Ω

1N1199C -

D

F

D2

330Ω

DC 10MOhm

H VGH

DC 10MOhm

-

+

0.611

IDEAL 1N5392

V

DC 10MOhm R3 220Ω VGI -

+

-

+ V

-7.182

C

V

2.489

VGC

I

DC 10MOhm

DC 10MOhm V1 15 V

D4 1N1199C

VGB -

B

+ V

7.818

VGJ DC 10MOhm

V

+

2.839

SILICON 1N5392

J

DC 10MOhm

+

7.207

VGM DC 10MOhm

5.328

V

VGL DC 10MOhm

+

4.718

-

+

7.207

+

-

VGA -

A

V

-

220Ω

DC 10MOhm

R4 220Ω

VGK DC 10MOhm

D5

R5

V

V

1N5392

M

L

K

VHA-VHM E

R1

V

+

VHD + V

-7.793

-

-4.625

VHE

V

-0.611

VHF

+

DC 10MOhm

D3 1N5392

-

-4.974 -

G

R2 470Ω

1N1199C -

D

F

D2

330Ω

V

VHG

+

DC 10MOhm

DC 10MOhm

H

DC 10MOhm IDEAL 1N5392

R3 220Ω VHI VHC + V

-7.793

C

-

+

-

1.879

V

DC 10MOhm

DC 10MOhm V1 15 V

D4 1N1199C

VHB -

B

I

+ V

7.207

DC 10MOhm

VHJ -

+

SILICON 1N5392

2.228

V

J

DC 10MOhm +

6.597

A

V

VHL DC 10MOhm

+

4.107

V

VHK DC 10MOhm

-

D5

220Ω

M

VIA-VIM

4.718

R5

V

DC 10MOhm

!

+ -

+

6.597

VHM DC 10MOhm

-

VHA -

V

1N5392

L

K

R4 220Ω

VJA-VJM E

R1

V

-

+ V

-10.02

V

-

+

-2.839

VGF

+

DC 10MOhm

VJH

-

-6.852

VJE

+

D3 1N5392

-

-7.202

D

G

R2 470Ω

1N1199C -

VJD

F

D2

330Ω

V

-2.228

VJG

V

H

+

DC 10MOhm

DC 10MOhm

DC 10MOhm

R3 220Ω

DC 10MOhm VJI IDEAL 1N5392

-

+

-0.35

V

I

DC 10MOhm

D4 1N1199C

VJC -

+ V

-10.02

C

DC 10MOhm V1 15 V VJB -

B

+ V

4.98

DC 10MOhm

J

SILICON 1N5392

+

4.369

VJA -

A

VJM DC 10MOhm

V

DC 10MOhm

M

! VKA-VKM

+

2.49

V

VJL DC 10MOhm

+

1.879

-

+

4.369

V

-

V

VJK DC 10MOhm

-

R5

D5

220Ω

1N5392

L

K

R4 220Ω

E

R1

+

-

-11.899

V

-

+

-4.717

VKF

+

DC 10MOhm

+ V

VKH

-

-8.731

VKE

D3 1N5392

V

-9.08

D

G

R2 470Ω

1N1199C -

VKD

F

D2

330Ω

V

-4.106

VKG

V

H

+

DC 10MOhm

DC 10MOhm

DC 10MOhm

R3 220Ω

DC 10MOhm VKI IDEAL 1N5392

-

+

-2.228

V

I

DC 10MOhm

D4 1N1199C

VKC -

+ V

-11.899

C

DC 10MOhm

VKJ -

+

V1 15 V

-1.878

J

DC 10MOhm

VKB -

B

V

+ V

3.101

R4 220Ω

DC 10MOhm SILICON 1N5392

+

2.49 -

VKM DC 10MOhm

+

0.611

V

VKL DC 10MOhm

-

+

2.49

A

V

-

VKA

D5

R5

V

220Ω

DC 10MOhm

1N5392

M

L

K

! VLA-VLM

E

R1

-

-9.691

D

V

-

+ V

-12.51

V

VLH -

+

-5.328

VLF

+

DC 10MOhm

D3 1N5392

-

-9.341

VLE

+

G

R2 470Ω

1N1199C -

VLD

F

D2

330Ω

V

-4.717

VLG

V

H

+

DC 10MOhm

DC 10MOhm

DC 10MOhm

R3 220Ω

DC 10MOhm VLI IDEAL 1N5392

-

+

-2.839

V

I

DC 10MOhm

D4 1N1199C

VLC -

+ V

-12.51

C

DC 10MOhm

VLJ -

+

V1 15 V

-2.489

VLB -

B

V

J

DC 10MOhm + V

2.49

R4 220Ω

DC 10MOhm SILICON 1N5392

+

1.879 -

A

VLM DC 10MOhm

+

VLK -

+

1.879

V

-

VLA

220Ω

DC 10MOhm

M

! VMA-VML

D5

R5

V

1N5392

L

K

-0.611

V

DC 10MOhm

E

R1

V

-

-14.389

V

-

+

-7.207

VMF

+

DC 10MOhm

+ V

VMH

-

-11.22

VME

+

D3 1N5392

-

-11.57

VMD

G

R2 470Ω

1N1199C -

D

F

D2

330Ω

V

-6.596

VMG

V

H

+

DC 10MOhm

DC 10MOhm

DC 10MOhm

R3 220Ω

DC 10MOhm VMI IDEAL 1N5392

-

+

-4.717

V

I

DC 10MOhm

D4 1N1199C

VMC -

+ V

-14.389

C

DC 10MOhm

VMJ -

+

V1 15 V

-4.367

J

DC 10MOhm

VMB -

B

V

+ V

0.611

R4 220Ω

DC 10MOhm SILICON 1N5392

+

VMA -

0

A

-1.878

V

VML DC 10MOhm

+

VMK

+

R5

V

220Ω

DC 10MOhm

M

-2.489

V

-

D5 1N5392

L

K

!

Data and Results: PARAMETERS No.

CURRENT (in mA) ON EACH TEST POINT

SIMUL...


Similar Free PDFs