Electron self-energy - Apuntes 1 PDF

Title Electron self-energy - Apuntes 1
Course Campos Cuánticos
Institution Universidad Complutense de Madrid
Pages 1
File Size 37.2 KB
File Type PDF
Total Downloads 49
Total Views 145

Summary

Cálculo de la contribución del diagrama de Feynman...


Description

Following our discussion of loop corrections in QED, now we are going to look at the self-interaction of an electron by a photon. Such process is described by the following Feynman diagram: The diagram shows a fermion current that interacts twice with a photon. The amplitude is Z i((✁p + ✁q) + m) −iηµν d4 q 4 µ (−ieγν )u(p, s) M = (2π) u( ¯ p, s)(−ieγ ) (2π )4 (p + q )2 − m2 + iǫ q 2 + iǫ Both incoming and outgoing fermions are irrelevant since we are interested only in the loop. In a loop correction analysis, it is often considered the amputated diagrams only. The amplitude for such diagram is usually defined as −iΣ(p): Z d4 q µ i((✁p + q) ✁ + m) γ ν ηµν −iΣ(p) = −e2 γ (2π )4 (p + q )2 − m2 + iǫ q 2 + iǫ Since we will perform dimensional regularisation, it is convenient to set the spacetime dimension to an arbitrary dimension D and then recover by setting again D = 4 − ǫ. The above expression for −iΣ(p) can be simplified if we use the well-known Clifford’s algebra identity γ µ γ ν + γ ν γ µ = 2η µν : γ µ (✁p + q✁ + m)γ ν ηµν = γ µ ✁pγ ν ηµν + γ µ ✁qγ ν ηµν + γ µ mγ ν ηµν = γ µ γ α pα γ ν ηµν + γ µ γ α qα γ ν ηµν + γ µ mγ ν ηµν µ ν (2η µα − γ α γ µ )pα γ ν ηµν + (2η µα − γ α γ µ )qα γ ν ηµν + γ µ mγν ηµν = 2(✁p + q) ✁ + γ γ ηµν (m − ✁p − q) ✁

Since γ µ γµ = D: γ µ (✁p + q✁ + m)γ ν ηµν = 2(✁p + ✁q) + D(m − ✁p − q) ✁ +m·D ✁ = (2 − D)(✁p + q) Now we have:

dD q (2 − D)(p✁ + ✁q) + m · D (2π )D ((p + q )2 − m2 + iǫ)(q 2 + iǫ)

Z

−iΣ(p) = −e2

As we did with the loop correction of a photon, we use the Feynman identity so that: −iΣ(p) = −e2

= −e

2

Z

dD q (2π )D

Z

0

1

dx

dD q (2π )D

Z

Z

1

dx

0

(2 − D)(p✁ + ✁q) + m · D [x((p +

q)2

(2 − D)(✁p + q) ✁ +m·D [xp2

+

xq 2

+ 2xpq −

m2 x

+

q2



x2

+ iǫ]

2

− m2 + iǫ) + (1 − x)(q 2 + iǫ)]

= −e

2

Z

dD q (2π )D

Z

1

dx

0

2

=

(2 − D)(✁p + q) ✁ +m·D [(q + xp)2 − x(m2 − (1 − x)p2 ) + iǫ]

We define l ≡ q + xp and M 2 ≡ x(m2 − (1 − x)p2 ) so our expression becomes: −iΣ(p) = −e2

Z

dD l (2π )D

Z

1

dx

(2 − D)(l✄ + (1 − x)✁p) + m · D [l2 − M 2 + iǫ]

0

2

If we take into account the symmetry of the fraction in terms of ✄l, it’s clear that all terms proportional to ✄l vanish. So: Z 1 Z dD l (2 − D)(l✄ + (1 − x)✁p) + m · D −iΣ(p) = −e2 dx 2 (2π )D 0 [l2 − M 2 + iǫ] −iΣ(p) = −e2

Z

dD l 1 D 2 (2π ) [l − M 2 + iǫ]2

Z

1

dx [(2 − D)(1 − x)✁p + m · D]

0

The final result is: −iΣ(p) = −i

Z 1 Z       1 1 α 1 M2 M2 α 1 −γ− − γ − 1 − 2 dx (1 − x ) log dx log m − i ✁p 2 0 4π ε 4πµ2 4πµ2 π ε 0

2...


Similar Free PDFs