Estadistica Para Psicologia y Educacion 1ed Bologna PDF

Title Estadistica Para Psicologia y Educacion 1ed Bologna
Pages 462
File Size 38.8 MB
File Type PDF
Total Downloads 70
Total Views 346

Summary

Eduardo Bologna Estadística para Psicología y Educación La presente es la versión aumentada y corregida del texto Estadística en psicología. Ed. Brujas, Córdoba, 2010 ISBN 978-987-591-205-2 Título: Estadística para psicología y educación Autor: Eduardo Bologna Colaboradores Faas, Ana Eugenia Gonzál...


Description

Accelerat ing t he world's research.

Estadistica Para Psicologia y Educacion 1ed Bologna Martin Maguiña

Related papers

Download a PDF Pack of t he best relat ed papers 

Diccionario del psicoanalisis alaniz emilce II. Polít ica Económica Pierina Enriquez GNSS. GPS: fundament os y aplicaciones en Geomát ica Mait e G.

Eduardo Bologna

Estadística para Psicología y Educación

La presente es la versión aumentada y corregida del texto Estadística en psicología. Ed. Brujas, Córdoba, 2010 ISBN 978-987-591-205-2

Título: Estadística para psicología y educación Autor: Eduardo Bologna Colaboradores Faas, Ana Eugenia González de Menne, María Cristina Medrano, Leonardo Morales, María Marta Reyna, Cecilia Romero, Waldino Urrutia, Andrés

Bologna, Eduardo Estadística para psicología y educación. - 1a ed. - Córdoba: Brujas, 2011. 454 p. ; 24x16 cm. ISBN 978-987-591-249-6 1. Estadística. I. Título. CDD 310

© 2011 Editorial Brujas 1° Edición. Impreso en Argentina ISBN:978-987-591-249-6 Queda hecho el depósito que marca la ley 11.723. Ninguna parte de esta publicación, incluido el diseño de tapa, puede ser reproducida, almacenada o transmitida por ningún medio, ya sea electrónico, químico, mecánico, óptico, de grabación o por fotocopia sin autorización previa.

www.editorialbrujas.com.ar [email protected] Tel/fax: (0351) 4606044 / 4691616- Pasaje España 1485 Córdoba - Argentina.

0 7: 95 ;:5> 7: 95 ;:5> 7: 95

-95>7 0/ ?8?87 # "!’" ?8?87 $ #!’" ?8?87 % $!’" ?8?87 & %!’" ?8?87 ’ &!’" ?8?87 ( ’!’" ?8?87 ) (! ’"

03 #!’" $!’" %!’" &!’" ’!’" (!’" )!’"

1#!"" $!"" %!"" &!"" ’!"" (!"" )!""

., & #" #% &# $& $( %#

.2 .,, .2, & "!"% "!"% "!") #& "!"+ "!"+ $) "!#* "!$* (* "!&( "!#( +$ "!($ "!#) ##* "!)+ "!$# #&+ #!""

Tabla en la que se han agregado las columnas FAA y FRA correspondientes a frecuencia absoluta acumulada y frecuencia relativa acumulada respectivamente. Las frecuencias acumuladas tienen especial interés para las variables continuas, dado que —como mencionamos más arriba— en ellas no pueden indicarse las frecuencias simples de un valor. Sí en cambio será posible indicar la frecuencia acumulada hasta ese valor. No podremos responder a la pregunta “¿cuántos miden exactamente 1,75m?”, pero sí podemos usar la frecuencia acumulada para responder a

&) D

| C a p í tu l o 2 : L a o r g a n i z a c i ó n d e d a t o s |

“¿cuántos miden 1,75m o menos?”. Éste es el tipo de pregunta que podemos responder sobre variables continuas. Vemos esto en el siguiente ejemplo, con la variable (continua) tiempos de reacción a un estímulo auditivo, medida sobre una muestra de 34 sujetos experimentales: Tiempo de reacción (en décimas de segundo, ds) 1,0-1,5 1,5-2,0 2,0-2,5 2,5-3,0 3,0-3,5 3,5-4,0 n

f 5 7 6 3 8 5 34

f´ 0,15 0,21 0,18 0,09 0,24 0,15 1,00

F



5 12 18 21 29 34

0,15 0,35 0,53 0,62 0,85 1,00

Acerca de los valores destacados, leemos de esta tabla que: Tres personas mostraron tiempos de reacción entre 2,5 y 3,0 ds (frecuencia absoluta simple). El 21% (una proporción de 0,21) de los sujetos experimentales tuvo tiempos de reacción entre 1,5 y 2,0 ds (frecuencia relativa simple). 18 sujetos tuvieron tiempos de reacción por debajo de 2,5 ds (frecuencia absoluta acumulada). El 85% (una proporción de 0,85) de los sujetos tuvo tiempos de reacción por debajo de 3,5 ds (frecuencia relativa acumulada). ¿Cómo presentar de manera gráfica los resultados? En la misma dirección de ofrecer una presentación de los datos recogidos que sea accesible para la interpretación, veremos a continuación las representaciones gráficas más frecuentemente usadas para mostrar información cuantitativa. Nuevamente aquí deberemos sacrificar la cantidad de información que se ofrece, a cambio del valioso impacto visual y facilidad de lectura que proveen los gráficos. Cuando se trata de variables nominales, normalmente con pocas categorías, son adecuados los gráficos de barras o los diagramas de sectores circulares (o “de torta”). Veamos un ejemplo para la tabla de la situación conyugal que reproducimos a continuación:

D &*

| Eduardo Bologna |

Tabla 15 Situación conyugal soltero casado o unido divorciado o separado viudo total

f 63 44 21 22 150

f’ 0,42 0,29 0,14 0,15 1,00

El paquete InfoStat® presenta el gráfico de barras así:

Y del siguiente modo los gráficos de sectores:

Al que resulta posible modificar en cuanto a formato, rótulos, etc., por ejemplo, si solicitamos que muestre las frecuencias absolutas y relativas de cada categoría, resulta:

’! D

| C a p í tu l o 2 : L a o r g a n i z a c i ó n d e d a t o s |

En los casos en que la variable tiene categorías cuantitativas (intervalar o proporcional) se utiliza un gráfico llamado histograma. Este gráfico no debe confundirse con el de barras, que se usa con variables nominales. La presentación de InfoStat® para el ejemplo de los ingresos de la tabla 9 es:

frecuencia relativa

Título 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0

1000

1500

2500

3500

ingreso

El lugar donde dice “título” es un espacio editable, para escribir el título del gráfico que elijamos. A pesar de su simplicidad hay un aspecto a tener en cuenta en este gráfico, que será importante más adelante. Es el hecho que se trata de un gráfico de áreas, ¿qué quiere decir esto? Veamos un ejemplo un poco diferente, supongamos que las amplitudes de las clases no son iguales, que, por ejemplo, hay muy pocos casos en las categorías más altas y que decidimos agrupar juntos a todos los que tienen más de 47 años. La tabla quedaría ahora así:

D ’"

| Eduardo Bologna |

Tabla 16 Edad (agrupada) 18-27 28-37 38-47 48-77 total

f 20 55 50 25 150

f’ 0,13 0,37 0,33 0,17 1,00

Si graficamos sin tener en cuenta la agrupación, el gráfico tendrá la forma siguiente:

En esta representación la categoría 48-77 aparece como muy importante, y esto no sucede porque tenga mucha frecuencia sino porque es más ancha (tiene mayor amplitud); aun así, el efecto visual confunde, porque hace creer que son edades de mayor importancia que la real. Para eliminar este efecto indeseable, se calcula la altura correspondiente a la frecuencia considerando que es la superficie y no la altura la que la representa, y se obtiene:

Así, las clases que sean más amplias tendrán menor altura que la que les correspondería por su frecuencia (para que la superficie del rectángulo = base por altura, sea proporcional a la frecuencia). ’# D

| C a p í tu l o 2 : L a o r g a n i z a c i ó n d e d a t o s |

No es importante saber hacer esa cuenta, pero sí es muy importante recordar que el histograma es un gráfico de superficie: es el área (o superficie) de las barras y no su altura la que indica la frecuencia. En consecuencia, la suma de las superficies de todas las barras será igual al total de casos (n) si graficamos frecuencias absolutas, y dará uno (1) si las que se grafican son las relativas. Los histogramas pueden transformarse en polígonos de frecuencias uniendo los puntos medios de cada intervalo como se muestra a continuación (volvemos al ejemplo de clases de igual amplitud, con los datos de la tabla 13).

En este gráfico hemos agregado dos intervalos, uno anterior al primero y uno posterior al último, cuyas frecuencias son cero, con el objetivo de “cerrar” el polígono sobre el eje horizontal. El área que queda bajo este polígono es igual a la que encierran los rectángulos del histograma, y valdrá n si se grafican frecuencias absolutas ó 1 si son las relativas, como en este ejemplo y como más comúnmente se hace, ya que permite comparar distribuciones de frecuencia que tengan diferente número de casos. Como ya señalamos, en este tipo de variables (intervalares o proporcionales) es posible calcular frecuencias acumuladas, por lo que también ellas pueden representarse gráficamente.

D ’$

| Eduardo Bologna |

Tabla 17 Edad (agrupada) 18-27 28-37 38-47 48-57 58-67 68-77 total

f 20 40 20 10 40 20 150

f’ 0,13 0,27 0,13 0,07 0,27 0,13 1,00

F 20 60 80 90 130 150

F’ 0,13 0,40 0,53 0,60 0,87 1,00

Este gráfico se llama ojiva. Obsérvese que la frecuencia acumulada para cada categoría se representa con un punto que corresponde al límite superior de cada una, esto es por la misma razón de antes: lo acumulado hasta esa categoría la incluye a ella. Hemos agregado una categoría más, correspondiente a las edades 8 a 17 años; es la anterior a la primera que aparece en la tabla. A esta categoría le corresponde frecuencia acumulada igual a cero y la incluimos para cerrar el gráfico sobre el eje horizontal. Este gráfico tiene otra virtud además de la claridad visual, ya que permite interpolar valores no observados, o que no aparecen en la tabla. Así, con el gráfico podemos responder a la pregunta ¿Qué proporción de casos tiene 45 años o menos? Como el valor 45 años no aparece en la tabla sino dentro de una categoría, no es posible responder desde la tabla; sin embargo, en el gráfico podemos buscar el valor 45 años e identificar la frecuencia acumulada que le corresponde.

’% D

| C a p í tu l o 2 : L a o r g a n i z a c i ó n d e d a t o s |

En este ejemplo, la ordenada (valor en el eje vertical) correspondiente a los 45 años es aproximadamente 0,5 (0,50), este resultado se lee diciendo que el 50% de los encuestados tienen 45 años o menos. En los capítulos siguientes veremos otras aplicaciones útiles de este procedimiento. Resumen de definiciones presentadas en el capítulo Frecuencia

Símbolo

Absoluta simple

f

Relativa simple

f’

Absoluta acumulada

F

Relativa acumulada

F’

Significado Cantidad de observaciones en cada categoría de la variable Proporción de observaciones en cada categoría de la variable Cantidad de observaciones en cada categoría de la variable y en todas las anteriores a ella Proporción de observaciones en cada categoría de la variable y en todas las anteriores a ella

Nivel en que tiene interpretación Todos

Todos

Ordinal o superior

Ordinal o superior

D ’&

| C a p í tu l o 2 : L a o r g a n i z a c i ó n d e d a t o s |

Actividad práctica de repaso 2 En un trabajo desarrollado por el Laboratorio de Psicología Cognitiva de la Facultad de Psicología, se llevó a cabo una investigación dentro del marco de la teoría Psicolingüística. En este estudio dirigido por Manoiloff y Seguí, se realizó un relevamiento de datos en una muestra de 35 estudiantes universitarios con el objeto de evaluar a qué edad se adquirían determinadas palabras. Algunos de los resultados obtenidos fueron: “Cangrejo” Edad de Adquisición 0 a 3 años 3 a 6 años 6 a 9 años Total

Frecuencia 1 17 17 35

Porcentaje 2,9 48,6 48,6 100

Frecuencia 16 14 2 3 35

Porcentaje 45,7 40,0 5,7 8,6 100

Frecuencia

Porcentaje 5,7 28,6 28,6 37,1 100

“Manzana” Edad de Adquisición 0 a 3 años 3 a 6 años 6 a 9 años 9 a 12 años Total

“Binoculares” Edad de Adquisición 3 a 6 años 6 a 9 años 9 a 12 años más de 12 años Total

2 10 10 13 35

1. Responda a las siguientes preguntas: a. ¿Cuántas personas de la muestra adquirieron la palabra “cangrejo” entre los 3 y los 6 años? b. ¿A qué edad se adquiere con mayor frecuencia la palabra “binoculares”? c. ¿Cuál es la palabra que se adquiere más temprano según los estudios reportados?

D ’(

| Eduardo Bologna |

Dadas las siguientes tablas de distribución de frecuencias Coeficiente intelectual Superior Brillante Inteligente Normal Poco inteligente Limítrofe (borderline o fronterizo) Deficiencia mental superficial Deficiencia mental media Deficiencia mental profunda Total Tipo de delito Robo Lesiones leves Hurto Lesiones graves Asesinato Total

150 240 440 520 535

150 90 200 80 15 535

Cantidad de materias aprobadas 0 1 2 3 4 5 6 7 Total

20 50 70 150 180 100 60 40 30 700

0,28 0,17 0,37 0,15 0,03 1,00

200 450 750 1050 1450 1750 1950 1970

20 70 140 290 470 570 630 670 700

0,03 0,10 0,20 0,41 0,67 0,81 0,90 0,96 1,00

0,03 0,07 0,10 0,21 0,26 0,14 0,09 0,06 0,04 1,00

200 250 300 300 400 300 200 20 1970

0,10 0,23 0,38 0,53 0,74 0,89 0,99 1,00

0,28 0,45 0,82 0,97 1,00

0,10 0,13 0,15 0,15 0,20 0,15 0,10 0,01 1,00

2. Para cada una: a. Indique el nivel de medición de cada variable. b. Rotule las columnas según se trate de frecuencias absolutas o relativas, simples o acumuladas. (Atención a que en las tablas aparecen desordenadas). c. Señale qué frecuencias tienen significado según el nivel de medición de las variables. d. Redacte una interpretación para cada uno de los valores que se encuentran destacados en las tablas y que tengan significado.

’) D

Capítulo 3: La expresión resumida de la información Eduardo Bologna La segunda etapa en la descripción de un conjunto de datos consistirá en calcular medidas que los resuman, que los expresen de manera sintética. Esta etapa implicará un nuevo alejamiento de la información bruta, ya que perderemos de vista no solo a los individuos —que aparecían en la matriz de datos—, sino también a las distribuciones de frecuencia. La ventaja de los procedimientos que veremos en este capítulo es la posibilidad de presentar la información de modo muy sintético; con unas pocas medidas descriptivas ofreceremos bastante información sobre los datos que se han recogido. Digamos antes de empezar que estas medidas requieren operaciones de diferente nivel de complejidad, por lo que apelan a diferentes propiedades de las escalas de medición, entonces no serán las mismas las medidas que se puedan calcular en una escala nominal que en una ordinal, intervalar o proporcional. El objetivo de describir el conjunto de datos se logrará indicando tres tipos diferentes de medidas. En primer lugar, haremos referencia a las medidas de posición. Estas medidas nos indicarán en torno a qué valores se distribuyen las observaciones. Dentro de las medidas de posición, definiremos las medidas centrales, (también llamadas de centralidad o de tendencia central), y no centrales. En segundo lugar, mencionaremos las medidas de dispersión (conocidas también como de variabilidad), que mostrarán si los datos están concentrados alrededor de las medidas de centralidad o si están dispersos, alejados de esas medidas centrales. En tercer lugar, nos detendremos en la forma que asume la distribución y allí, aunque hay otras medidas, solo nos ocuparemos de describir la simetría o asimetría que manifiesta el conjunto de datos. A los fines de la notación usada para referirse a cada una de estas medidas descriptivas, asumiremos que trabajamos sobre datos provenientes de una muestra, de la que n representa la cantidad de casos observados.

D ’*

| Eduardo Bologna |

Medidas de posición Entre las medidas que resumen una distribución de frecuencias, mencionaremos las centrales y las no centrales. Las medidas que se puedan calcular dependerán del nivel de medición de las variables que se describan, por lo que las presentaremos separadamente para cada nivel, siempre recordando que las operaciones que son válidas a un determinado nivel de medición también son válidas para niveles más altos. Por ejemplo: lo que pueda hacerse con variables nominales, vale también para ordinales y métricas. Medidas de centralidad Son las que indican alrededor de qué valores de ubican las observaciones de una distribución de frecuencias. Variables nominales: la proporción Cuando se trabaja con una variable de nivel nominal, una manera sintética de presentar la información que ofrece la tabla de distribución de frecuencias es indicando la proporción de casos que se encuentran en una determinada categoría. Se trata de la frecuencia relativa simple (f') de una categoría particular. Sea la siguiente una clasificación de los diagnósticos dados por un psicólogo a un conjunto de pacientes: Tabla 1 Diagnóstico Psicosis Neurosis Perversión Total

f 10 50 20 80

f' 0,125 0,625 0,250 1,000

Podemos indicar la proporción de casos diagnosticados como psicosis, como p=0,125, que puede también expresarse como 12,5%. La elección de cuál categoría se elige para indicar la proporción solo depende de los objetivos de la descripción. Al elegir una categoría se llama la atención sobre ella, se la destaca, ya que la proporción restante incluye a todas las demás categorías, los “otros”. Esa proporción restante se obtiene restando de 1 (uno) la proporción indicada, o restando de 100 (cien) si ha expresado como porcentaje. En nuestro ejemplo, diremos que 0,875 (que proviene de hacer 1-0,125) es la proporción de otros diagnósticos o bien que éstos representan el 87,5% (100-12,5).

(! D

| C a p í t u l o 3 : L a e x p r e s i ó n r e s u m i da d e l a i n f o r m a c i ó n |

La proporción es la frecuencia relativa correspondiente a una categoría particular. Puede expresarse como decimal o en porcentaje. Se indica como p. Esta medida descriptiva se usa a menudo cuando la variable nominal tiene solo dos categorías, ya que se presenta la proporción de una de ellas e inmediatamente se sabe que el complemento es la proporción de la otra. Si se trata de pacientes que consultan a un servicio de admisión psicológica en un hospital, ellos pueden ser clasificados como sigue: Tabla 2 Resultado de la entrevista de admisión Admitido como paciente No admitido Total

f 150 50 200

f´ 0,75 0,25 1,00

Eligiendo como categoría de referencia “Admitido como paciente”, resulta ser p=0,75, que dice que la proporción de pacientes admitidos es de 0,75, o del 75%. Si se resume la tabla diciendo que “el 75% de las personas que consultan es admitido”, se sabe de inmediato que el 25% restante no es admitido. Notemos que esta medida es la misma que presentamos en el capítulo 2 cuando indicamos que la proporción es el cociente entre la frecuencia propia de la categoría y el total de casos. Esta proporción puede también indicarse en variables de nivel de medición superior al nominal, pero no resulta de interés cuando hay gran cantidad de categorías. Así, por ejemplo, si se trata de la distribución de las notas de un parcial, no se estila indicar cuál es la proporción de cada calificación (lo que se vería en una tabla de distribución de frecuencias de las notas). Sin embargo, es común construir variables nominales a partir de las notas y es de mucho interés indicar, por ejemplo, la proporción de promocionados, o la proporción de quienes quedaron libres. Variables nominales: el modo La más elemental de las medidas de centralidad que se usa en los distintos niveles de medición se denomina modo, o moda, o valor modal y es simplemente el valor de la variable (la categoría) que tiene la mayor frecuencia. Dicho de otra manera, el valor de la

D ("

| Eduardo Bologna |

variable más frecuentemente observado18. Esta medida no requiere ningún cálculo, no exige ninguna propiedad de la escala de medición, por lo tanto se puede indicar en variables desde el nivel nominal, es decir en todos los niveles de medición. La variable tipo de hogar, tiene la siguiente distribución: Tabla 3 tipo de hogar

f

unipersonal

40

nuclear

90


Similar Free PDFs