Guia de interpretacion de analisis de suelos y aguas intagri 3 PDF

Title Guia de interpretacion de analisis de suelos y aguas intagri 3
Author Victor Manzano Pérez
Course Bases de la enfermería clínica
Institution Universidad del Papaloapan
Pages 10
File Size 255.2 KB
File Type PDF
Total Downloads 19
Total Views 143

Summary

analisis de suelo...


Description

Guía para la interpretación del análisis de suelo y agua Javier Z. Castellanos INTAGRI La definición del programa de fertilización y mejoramiento del suelo depende de los análisis físicos y químicos y del historial del mismo. Un suelo no puede conocerse solamente mediante los sentidos, pues sus propiedades químicas solo pueden ser determinadas mediante el análisis químico con los métodos adecuados. El análisis tiene dos objetivos esenciales: a) Determinar si existen limitantes que impidan que el cultivo exprese todo su potencial de rendimiento y b) Conocer los niveles de disponibilidad de los nutrimentos, para decidir si se agregan estos elementos en la forma de fertilizantes, a qué dosis y con qué fuentes, así como predecir la necesidad de suministrar algunos elementos por la vía foliar durante el desarrollo del cultivo. Primeramente se revisan los resultados del análisis para saber si el suelo presenta limitantes de orden químico o físico, que indiquen la necesidad de aplicar un lavado para el caso de los suelos salinos o bien la necesidad de aplicar mejoradores físicos y/o químicos. En algunos casos la condición limitante del suelo no es posible de ser eliminada, por lo que se desarrollan las estrategias para convivir con el problema y obtener del suelo el máximo beneficio dentro de sus limitaciones de orden natural. Una vez identificados los factores limitantes del suelo, si es que existen, el paso siguiente es definir si se justifica la aplicación de mejoradores químicos como es el encalado para los suelos ácidos y el yeso agrícola para los suelos sódicos. Eventualmente puede requerirse establecer una estrategia para subir el nivel de materia orgánica mediante la incorporación de residuos de cultivo o mediante la aplicación de materia orgánica de diverso origen. En algunos casos no es posible eliminar algunas condiciones limitantes, como la presencia de carbonatos, pero el conocimiento de esto, permite al menos discernir acerca de la mejor estrategia de manejo para estos suelos. Mediante el conocimiento de los niveles de los nutrimentos en el suelo, el historial de manejo de los cultivos previos y de las metas de rendimiento actuales se define el programa de fertilización. Posteriormente mediante el monitoreo de la nutrición del cultivo, a partir del análisis foliar y del extracto celular de pecíolo (cuando hay niveles de referencia confiables), se confirma el éxito del programa de fertilización o en su caso se afina o se corrige dicho programa y de esta manera se asegura una producción rentable del cultivo. A continuación se indican los pasos que se dan para interpretar correctamente los análisis de suelo.

La interpretación de los análisis de suelo Los principales problemas del suelo que pueden ser diagnosticados mediante análisis de laboratorio son: Acidez, Sodicidad y Salinidad. Existen otros problemas como la compactación física que requiere de un manejo de labranza y en ocasiones de la

aplicación de materia orgánica. Por otro lado la presencia de altas concentraciones de carbonatos, mas que un problema es una condición natural de los suelos de zonas áridas, con la que hay que aprender a convivir mediante el manejo de la fertilización y el uso racional de algunos mejoradores químicos. Una vez definido lo anterior, se procede a conocer los niveles de macro y micro nutrientes disponibles en el suelo para decidir los programas de fertilización y las fuentes más recomendadas. 1.- pH del suelo Esta es una de las determinaciones mas importantes, pues se relaciona con la disponibilidad nutrimental y con la presencia de aluminio libre que resulta toxico para el desarrollo del cultivo. Primeramente es necesario revisar si la determinación es hecha en agua, CaCl2, o KCl y en qué relación suelo: solución se hizo (regularmente se determina en una relación 1:2). Cuando la determinación se realiza en CaCl2, la lectura de pH es de 0.4 a 0.8 mas bajo que la que se realiza en agua y cuando es en KCl es alrededor de 1 unidad mas baja que la determinada en agua. El rango de posibilidades se presenta a continuación, así como sus posibles implicaciones. En los datos de abajo nos referimos al pH determinado en agua. a) pH >9.0 Un pH tan elevado del suelo solo podría explicarse por la presencia de muy elevados niveles de sodio intercambiable, lo que hace al suelo inexplotable para la agricultura. Cuando un suelo sódico presenta pH tan elevado se debe a la presencia de carbonato de sodio, una sal muy tóxica que afecta gravemente el crecimiento del cultivo. De aquí, ir directamente a revisar el nivel de sodio intercambiable, pues el resto de las determinaciones pierden importancia ante la presencia de un problema tan grave de sodio. En tal caso es necesario analizar el agua de riego para conocer la fuente de este problema. Es muy posible que el agua con que este suelo se riega contenga elevadas cantidades de sodio, es decir una RAS muy elevado. b) pH 8.2-9.0 Es muy posible que el suelo presente niveles excesivos de sodio, particularmente si el pH es mayor de 8.4 y cuyo origen es el agua con que se riega el suelo. Al ver este resultado es conveniente ir a revisar el nivel de sodio intercambiable para confirmar esta posibilidad. c) pH=7.0-8.1 Posible presencia de carbonatos, revisar niveles de P, Fe, Zn, Mn y Cu, pues en pH alcalino se reduce su disponibilidad. d) pH=6.0-6.5 Condición ideal de pH (Excepto en el caso de los Andosoles). e) pH=5.5-6.0 En la parte baja de este rango bajo estamos en el umbral de que se presenten problemas de Al +++ Intercambiable. (Excepto en el caso de Andosoles, donde el Al+++ puede ser un problema aun a pH mayor). f) pH=4.5-5.5 Muy ácido, presencia de Al +++ Intercambiable en cantidades apreciables, lo que provoca toxicidad para el cultivo y afecta el rendimiento. Revisar el nivel de Al Intercambiable y si no se analizó, mandar a analizar esta catión. Requiere encalado, por lo que hay que determinar la dosis mas apropiada, revisar niveles de P disponible y es factible que ocurran problemas de disponibilidad de Mo. g) pH < 4.5 Suelo extremadamente ácido con alta saturación de aluminio y necesariamente requiere encalado para poder producir satisfactoriamente, aun en el caso de cultivos tolerantes a la acidez. Revisar posible deficiencia de K, Ca, Mg, P y Mo o un posible exceso de Mn, aunque este problema solo se presenta en algunos suelos del trópico.

Determinación de las necesidades de cal en un suelo ácido En forma general sólo se recomienda rehabilitar un suelo ácido cuando presenta un pH menor de 5.5 determinado en agua. Sin embargo el conocimiento del nivel de aluminio intercambiable nos puede dar más elementos para decidir si se aplica cal o no al suelo. Para definir la dosis de cal se pueden seguir dos estrategias. En la primera se requiere conocer la concentración de aluminio intercambiable en unidades de me/100 g. Este valor se multiplica por un factor de 1.0, 1.5 o 2, según sea la tolerancia del cultivo que se va a sembrar y el resultado son las toneladas de cal (Carbonato de Calcio) que hay que aplicar. El factor de 1 es para cultivos propios de regiones tropicales, tales como piña, yuca o pastos tropicales. El factor de 1.5 es para cultivos de respuesta intermedia a la acidez y el factor de 2.0 es para cultivos muy sensibles a la acidez. Este procedimiento ha funcionado muy bien en suelos tropicales. Otra alternativa es usar el procedimiento empírico basado en nivel de materia orgánica y textura del suelo que da requerimientos de cal que van de media tonelada hasta 7 u 8 ton de cal por ha. Ente más alto es el nivel de materia orgánica y el contenido de arcilla, mayores serán las necesidades de cal para un suelo ácido. Este procedimiento determina solo en forma aproximada las necesidades de cal. La dosis de cal depende del tipo de producto a usar, es decir de su valor relativo de neutralización y de la finura o mallaje que presenta el producto. También se puede usar la estrategia de medir el pH Buffer, que permite calcular requerimientos de cal. 2.- Sodicidad La sodicidad se mide a través de la determinación de sodio y se cuantifica mediante la relación que guarda con la capacidad de intercambio catiónico (CIC) del suelo, es decir mediante el Porciento de Sodio Intercambiable (PSI). Se cuantifica mediante la ecuación: PSI=(Na/CIC) x 100, usando unidades de meq/100 g ó cmol(+)/kg para el Na y para la CIC. Por ello es importante usar procedimientos analíticos del suelo que permitan calcular la CIC como el uso del acetato de amonio. Otros procedimientos como el de Melich 3 o el método de Soltanpur, no permiten calcular la CIC pues normalmente sobreestiman o subestiman el nivel de Ca y Mg como cationes de cambio. El rango de posibilidades se presenta a continuación, así como sus posibles implicaciones. PSI a) 0-5 % Libre de sodio, sin problemas de manejo y no requiere de aplicaciones masivas de calcio o de formadores de calcio en el suelo. b) 5-10% Ligeramente sódico en suelos de textura media a fina, es posible que sea necesario darle mantenimiento con aplicaciones de yeso agrícola. Se requiere determinar necesidades de yeso. c) 10-15% Moderadamente sódico, será necesario hacer aplicaciones de yeso. Se requiere determinar necesidades de yeso. d) 15-20% Suelo francamente sódico, es posible que estén ocurriendo problemas de permeabilidad en el campo. Normalmente el pH de un suelo con este nivel de sodio es elevado. Es necesario rehabilitar el suelo con aplicaciones de yeso para que pueda producir satisfactoriamente. e) 20-30% Suelo muy sódico, es necesario rehabilitarlo con aplicaciones de yeso agrícola para poder hacer una explotación rentable del terreno.

f) >30% Suelo extremadamente sódico, que no puede ser explotado sin ser rehabilitado con aplicaciones masivas de una fuente de calcio o un formador de calcio, cuando es un suelo calcáreo. Es necesario determinar la dosis a aplicar y luego se requiere hacer lavado de la sal de sulfato de sodio que se formará al reaccionar el yeso con el sodio. Nota: En cuanto a la aplicación de calcio o de un formador de calcio se debe tener cuidado de no usar ácido sulfúrico, si el suelo no es calcáreo (mas de 2% de carbonatos). Para la determinación de la dosis de yeso le recomendamos adquirir el manual de interpretación o bien, asistir al curso sobre evaluación de fertilidad del suelo de Intagri. 3. Salinidad o Conductividad Eléctrica (CE) Se trata del parámetro que indica la presencia de sales en el suelo y se expresa en dS/m (antes mmhos/cm). El problema de salinidad tiene dos efectos sobre el cultivo: Los efectos generales y los efectos específicos. Los efectos generales se refieren al descenso en el potencial de agua en el suelo, es decir a que la planta tiene que hacer un mayor esfuerzo para poder extraer agua del suelo. Los efectos específicos se refieren a la toxicidad que se puede presentar por la presencia de un ion especifico como cloro, boro, y en algunos casos sodio. En general cuando se habla de salinidad, se refiere a los efectos generales y ésta se mide en el extracto de saturación CEe (por ello se le pone la letra e como subíndice, que significa extracto). Sin embargo algunos laboratorios lo miden, por facilidad y economía, en una relación suelo: agua, 1:2 (CE1:2). o 1:5 (CE1:5). Aquí presentamos la interpretación para la CEe. CEe a) < 2 dS/m Suelo libre de sales, condición ideal para producir cualquier cultivo. b) 2-4 dS/m Suelo ligeramente salino, es posible que se afecte el rendimiento de cultivos sensibles. c) 4-6 dS/m Suelo moderadamente salino, el rendimiento de la mayoría de los cultivos se afecta. En el caso de los cultivos tolerantes el efecto es menor, pero en los cultivos susceptibles el daño puede ser muy severo. d) 6-8 dS/m Suelo salino, el rendimiento de la mayoría de los cultivos se afecta, en el caso de los cultivos tolerantes el efecto es menor. e) 8-12 dS/m Suelo muy salino, difícil de explotar en tales condiciones, requiere lavado. No obstante algunos cultivos muy tolerantes podrían explotarse si el nivel de sales esta en la parte baja de este rango. Para estos cultivos el uso de sistemas de riego por goteo podrían facilitar el uso de suelos con un nivel de salinidad en la parte baja de este rango, pero de entrada se debe aceptar que aun en el caso de cultivos tolerantes habrá una reducción en el rendimiento en comparación con un suelo libre de sales. f) > 12 dS/m Suelo extremadamente salino, normalmente no crece cultivo en ese suelo. Es necesario rehabilitarlo mediante lavado con agua de razonable calidad (baja en sales). 4.- Contenido de carbonatos La presencia de carbonatos en el suelo ocurre en los suelos de regiones áridas y semiáridas, pues por la baja precipitación pluvial se acumulan en el perfil del suelo. Por

ello la presencia de esta sal insoluble es una condición natural de los suelos de esas regiones. Los carbonatos incrementan el pH del suelo y reducen la disponibilidad de algunos elementos, particularmente de los micronutrientes: Fe y Zn, pero puede también afectar la de Mn y Cu. También reduce la disponibilidad de fósforo debido a la formación de fosfatos insolubles de calcio. La determinación de carbonatos se realiza con un calcímetro al hacer reaccionar un ácido con este compuesto se forma CO2 y la presión que genera se cuantifica mediante un manómetro. Carbonatos a) 0-2% Suelo prácticamente libre de carbonatos. En estos suelos no es recomendable la aplicación de ácidos por ningún motivo dado a que por su baja capacidad de amortiguamiento un exceso de ácido puede provocar un efecto contrario en el suelo y pasar bruscamente de un pH alcalino a uno ácido. b) 2-5% Suelo ligeramente calcáreo, requiere manejo de fuentes de nutrientes de reacción ácida, como los sulfatos, siempre que sea posible. Revisar posibles problemas con Fe y Zn. c) 5-10% Suelo moderadamente calcáreo, requiere manejo de fuentes de nutrientes de reacción ácida, como los sulfatos, siempre que sea posible. Revisar posibles problemas con Fe, Zn, Mn o Cu. c) 10-20% Suelo calcáreo, revisar posibles problemas de fijación de P y prever una baja disponibilidad de Fe, Zn, Mn o Cu. Revisar el nivel de estos micronutrientes, mediante el método DTPA. d) 20-40% Suelo altamente calcáreo, revisar posibles problemas de fijación de P y prever una baja disponibilidad de Fe, Zn, Mn o Cu. Revisar el nivel de estos micronutrientes, mediante el método DTPA. En estos suelos se recomienda usar solo fuentes de reacción ácida para aminorar el efecto de la alta concentración de carbonatos. h) > 40% Suelo extremadamente calcáreo, problemas con fijación de P y muy seguras deficiencias de Fe, Zn, Cu o Mn, revisar el nivel de estos micronutrientes. En estos suelos se recomienda usar solo fuentes de reacción ácida para aminorar el efecto de la alta concentración de carbonatos. En todos los suelos calcáreos se recomienda usar fuentes fertilizantes de reacción ácida, en forma localizada y no tratar de neutralizar el suelo con aplicaciones de ácido sulfúrico, si no existen problemas de sodio, pues se requerirían cantidades prohibitivas de ácido para neutralizar estos suelos. 5.- Materia Orgánica La materia orgánica es una determinación importante pues cuando se encuentra a niveles bajos en el suelo se esperan algunos problemas con las propiedades físicas, como es la estructura, la dureza del mismo y un flujo de agua limitado. Puede afectarse la aireación del suelo y la facilidad para que sea explorado por el sistema radical. Incluso la disponibilidad de Zn se ve afectada en suelos de bajo nivel de materia orgánica, particularmente si el suelo presenta un pH alcalino. Para fines de interpretación, los niveles dependen de la textura del suelo, del régimen climático, del tipo de suelo, pues hay suelos que por su alto nivel de Al, reducen la actividad biológica y la materia orgánica se mantiene a bajos niveles de mineralización. (Andosoles).

6. Textura del suelo. Suelos de Textura Gruesa Su principal característica es su baja capacidad para retener nutrimentos y agua. La alta proporción de poros grandes y el bajo contenido de arcillas facilitan ampliamente las pérdidas de agua y nutrimentos, sobre todo de nitrógeno nítrico. Por otro lado, las aplicaciones de amoniaco anhidro no son recomendables en estos suelos, particularmente en los más arenosos, pues el potencial de pérdida por volatilización es alto. En tales casos es obligado inyectar el amoniaco a una profanidad de 30 cm. La alta lixiviación y volatilización de nitrógeno en estos suelos hacen imperativo fraccionar tanto como sea posible la fertilización nitrogenada. Suelos de Textura Media. Las texturas que podrían quedar englobadas en este grupo son: franco limoso, franco, franco arcillo arenoso, y franco arcillo limoso y franco arcilloso. Son suelos ligeramente pegajosos y plásticos, cuando están mojados; suaves a firmes cuando están húmedos y ligeramente duros cuando están secos. Tienden a formar agregados de tamaño pequeño a medio. Presentan una alta proporción de poros de tamaño medio a fino. Presentan una moderadamente alta capacidad para retener agua y nutrimentos. Son los suelos ideales para la producción agrícola por su amplia capacidad productiva y disponibilidad de agua y nutrimentos. Pueden o no ser friables y a medida que se incremente la proporción de limo tienen mayor potencial de compactación, lo cual puede dificultar parcialmente su manejo. Suelos de Textura Fina. Cuando están secos son muy duros. Presentan una alta proporción de poros finos. Para poder labrarse adecuadamente deben tomarse en un punto óptimo de humedad y en general no son de fácil labranza. Tienden a formar agregados grandes y firmes. Los grupos texturales son: arcilla, arcilla limosa, arcilla arenosa y limo. Presentan alta capacidad de retención de agua y nutrimentos, particularmente si contienen arcillas de tipo 2:1 (montmorillonita o illita). Estos suelos normalmente son los de más alta fertilidad natural. Sin embargo, deben manejarse con precaución, pues se compactan fácilmente cuando se labran o cultivan en condiciones húmedas. Cuando estos suelos tienen buenos contenidos de materia orgánica son extraordinariamente productivos y muy fértiles si se manejan y labran apropiadamente. 7. Niveles de Nutrimentos Siempre revisar el método de diagnóstico usado para poder interpretar los resultados correctamente. Cada método tiene sus niveles de interpretación. No todos los métodos son buenos, por lo que conviene consultar cuáles son los adecuados para cada tipo de suelo. Nitrógeno La dosis de Nitrógeno a aplicar al cultivo se calcula a partir de la siguiente ecuación: DN = [(MR x Ne)/Ef]. – [(Nm + Ni + Nr + No)] Donde: DN= Cantidad o dosis de nitrógeno total que es necesario aplicar, kg/ha MR= Meta de rendimiento, t/ha

Ne= Cantidad de nitrógeno total extraído por unidad del rendimiento kg/t. Nm= Nitrógeno mineralizado de la materia orgánica, kg/ha. Ni = Nitrógeno inorgánico en el perfil del suelo, kg/ha. Nr= Efecto de cultivo anterior (Nitrógeno mineralizado(+) ó inmovilizado (-) de los residuos de cultivo anterior), kg/ha. No= Nitrógeno mineralizado de enmiendas orgánicas, kg/ha. Ef= Factor de eficiencia de uso del nitrógeno, (0.40 a 0.90). Fósforo Para decidir la dosis de aplicación de fósforo al suelo se toma en cuenta primeramente el nivel de P en el suelo en función del método de análisis utilizado por el laboratorio; se recomienda Bray para suelos ácidos y Olsen para alcalinos. En el caso de suelos con problemas de fijación por elevada concentración de aluminio o por una concentración muy elevada de carbonatos de calcio es recomendable multiplicar la dosis de P por un factor de 1.2 a 1.5 dependiendo del grado de problema del suelo en cuanto a la capacidad de fijación del P por el suelo. Potasio Para decidir la dosis de K se utilizan los niveles de interpretación en base al cuadro de requerimientos de K, basado en tipo de cultivo, rendimiento y nivel de K en el suelo. Para suelos tropicales degradados: Acrisoles, Oxisoles, Cambisoles, Luvisoles y Arenosoles con CICE menor a 5 Cmol(+)/kg usar un cuadro de interpretación propio para esos suelos. La definición de la dosis de K depende del cultivo, meta de rendimiento y del nivel de K en el suelo. Calcio La definición de la dosis de Ca a aplicar el suelo como nutriente para el cultivo depende más bien del cultivo y de la relación con otros cationes del suelo como es ...


Similar Free PDFs