Tarea 1 Leyes que aplican para un motor electrico PDF

Title Tarea 1 Leyes que aplican para un motor electrico
Author JESUS CADIV GUERRERO SAUCEDA
Course Sistemas y máquinas de fluidos
Institution Instituto Tecnológico de Tijuana
Pages 10
File Size 721 KB
File Type PDF
Total Downloads 91
Total Views 127

Summary

hgngfn...


Description

INSITUTO TECNOLOGICO DE TIJUANA INGENIERIA ELECTROMECANICA

Materia: Maquinas Eléctricas Serie: EMJ-1017EM6B Profesor: Ing. Hernández Velázquez José David Alumno: Guerrero Sauceda Jesús Cadiv Numero de control: 18210283 Horario: 20:00 – 21:00

TAREA #1 Leyes que aplican para un motor eléctrico.

TIJUANA BAJA CALIFORNIA, MEXICO.

25 DE SEPTIEMBRE DE 2020

Generalidades de un motor eléctrico. El motor eléctrico es un dispositivo que convierte la energía eléctrica en energía mecánica de rotación por medio de la acción de los campos magnéticos generados en sus bobinas. Son máquinas eléctricas rotatorias compuestas por un estator y un rotor. Algunos de los motores eléctricos son reversibles, ya que pueden convertir energía mecánica en energía eléctrica funcionando como generadores o dinamo. Son utilizados en infinidad de sectores tales como instalaciones industriales, comerciales y particulares. Su uso está generalizado en ventiladores, vibradores para teléfonos móviles, bombas, medios de transporte eléctricos, electrodomésticos, esmeriles angulares y otras herramientas eléctricas, unidades de disco, etc. Los motores eléctricos pueden ser impulsados por fuentes de corriente continua (CC), y por fuentes de corriente alterna (CA). La corriente directa o corriente continua proviene de las baterías, los paneles solares, dínamos, fuentes de alimentación instaladas en el interior de los aparatos que operan con estos motores y con rectificadores. La corriente alterna puede tomarse para su uso en motores eléctricos bien sea directamente de la red eléctrica, alternadores de las plantas eléctricas de emergencia y otras fuentes de corriente alterna bifásica o trifásica como los inversores de potencia. Los pequeños motores se pueden encontrar hasta en relojes eléctricos. Los motores de uso general con dimensiones y características más estandarizadas proporcionan la potencia adecuada al uso industrial. Los motores eléctricos más grandes se usan para propulsión de trenes, compresores y aplicaciones de bombeo con potencias que alcanzan 100 megavatios. Estos motores pueden ser clasificados por el tipo de fuente de energía eléctrica, construcción interna, aplicación, tipo de salida de movimiento, etcétera.

Unidad I

Página 2

Sabemos que un conductor por el que circula una corriente sufre una fuerza en presencia de un campo magnético. Puesto que la corriente está constituída por cargas eléctricas en movimiento.

Fuerza de Lorentz Al observar experimentalmente cómo es la fuerza que un campo B ejerce sobre una carga eléctrica q se cumple que: Si la carga está en reposo, el campo B no ejerce ninguna fuerza sobre ella. La fuerza es máxima cuando la velocidad de la carga v y el campo B son perpendiculares y es nula cuando son paralelos. La fuerza es perpendicular al plano formado por v y B. La fuerza es proporcional al valor de la carga q y a la velocidad v. Si la carga cambia de signo, la fuerza cambia de sentido Resumiendo, todos estos hechos, se concluye que la fuerza que un campo B ejerce sobre una carga eléctrica q que se mueve con una velocidad v viene dada por la expresión:

La fuerza electrostática es tangente en cada punto a las líneas de campo eléctrico, sin embargo, para el campo magnético se cumple que: La fuerza magnética es perpendicular a las líneas de campo B Si la carga q se encuentra además bajo la acción de un campo eléctrico E, la fuerza resultante que actúa sobre ella es

Conocida como la fuerza de Lorentz

Unidad I

Página 3

Leyes de Newton Las leyes de Newton son tres principios que sirven para describir el movimiento de los cuerpos, basados en un sistema de referencias inerciales (fuerzas reales con velocidad constante). Las tres leyes de Newton son: Primera ley o ley de la inercia. Segunda ley o ley fundamental de la dinámica. Tercera ley o principio de acción y reacción. Estas leyes que relacionan la fuerza, la velocidad y el movimiento de los cuerpos son la base de la mecánica clásica y la física. Fueron postuladas por el físico y matemático inglés Isaac Newton, en 1687.

La ley de la inercia o primera ley postula que un cuerpo permanecerá en reposo o en movimiento recto con una velocidad constante, a menos que se aplique una fuerza externa. Dicho de otro modo, no es posible que un cuerpo cambie su estado inicial (sea de reposo o movimiento) a menos que intervengan una o varias fuerzas. La fórmula de la primera ley de Newton es:

Si la fuerza neta (Σ F) aplicada sobre un cuerpo es igual a cero, la aceleración del cuerpo, resultante de la división entre velocidad y tiempo (dv/dt), también será igual a cero. Un ejemplo de la primera ley de Newton es una pelota en estado de reposo. Para que pueda desplazarse, requiere que una persona la patee (fuerza externa); de lo contrario, permanecerá en reposo. Por otra parte, una vez que la pelota está en movimiento, otra fuerza también debe intervenir para que pueda detenerse y volver a su estado de reposo.

Unidad I

Página 4

Segunda ley de Newton: ley fundamental de la dinámica La ley fundamental de la dinámica, segunda ley de Newton o ley fundamental postula que la fuerza neta que es aplicada sobre un cuerpo es proporcional a la aceleración que adquiere en su trayectoria. La fórmula de la segunda ley de Newton es: F= m.a En donde F = fuerza neta m = masa, expresada en Kg. 2 a = aceleración, expresada en m/s (metro por segundo al cuadrado).

Tercera ley de Newton: principio de acción y reacción l postulado de la tercera ley de Newton dice que toda acción genera una reacción igual, pero en sentido opuesto. La fórmula de ley de acción y reacción es: F1-2 = F2-1 Un ejemplo de la tercera ley de Newton es cuando tenemos que mover un sofá, o cualquier objeto pesado. La fuerza de acción aplicada sobre el objeto hace que este se desplace, pero al mismo tiempo genera una fuerza de reacción en dirección opuesta que percibimos como una resistencia del objeto.

Unidad I

Página 5

La ley de Faraday La ley de Faraday o también llamada ley de inducción electromagnética, es un postulado fundamentado en los experimentos de Michael Faraday, un físico británico que en el año 1831 enunció que el voltaje que se desarrolla en un circuito cerrado, es abiertamente proporcional a la velocidad con que se modifica en el tiempo, la circulación magnética que penetra todo tipo de superficie con el circuito como borde.

Aplicación Cualquier cambio del entorno magnético en que se encuentra una bobina de cable, originará un "voltaje" (una fem inducida en la bobina). No importa cómo se produzca el cambio, el voltaje será generado en la bobina. El cambio se puede producir por un cambio en la intensidad del campo magnético, el movimiento de un imán entrando y saliendo del interior de la bobina, moviendo la bobina hacia dentro o hacia fuera de un campo magnético, girando la bobina dentro de un campo magnético, etc.

La ley de Faraday es una relación fundamental basada en las ecuaciones de Maxwell. Sirve como un sumario abreviado de las formas en que se puede generar un voltaje (o fem), por medio del cambio del entorno magnético. La fem inducida en una bobina es igual al negativo de la tasa de cambio del flujo magnético multiplicado por el número de vueltas (espiras) de la bobina. Implica la interacción de la carga con el campo magnético.

Unidad I

Página 6

ley de Ohm La ley de Ohm, postulada por el físico y matemático alemán Georg Simón Ohm, es una ley básica de los circuitos eléctricos. Establece que la diferencia de potencial V que aplicamos entre los extremos de un conductor determinado es directamente proporcional a la intensidad de la corriente I que circula por el citado conductor. Ohm completó la ley introduciendo la noción de resistencia eléctrica R; que es el factor de proporcionalidad que aparece en la relación entre V e I:

La fórmula anterior se conoce como fórmula general de la ley de Ohm,12 y en la misma, V corresponde a la diferencia de potencial, R a la resistencia e I a la intensidad de la corriente. Las unidades de esas tres magnitudes en el sistema internacional de unidades son, respectivamente, voltios (V), ohmios (Ω) y amperios (A).

En física, el término ley de Ohm se usa para referirse a varias generalizaciones de la ley originalmente formulada por Ohm. El ejemplo más simple es:

donde J es la densidad de corriente en una localización dada en el material resistivo, E es el campo eléctrico en esa localización, y σ (sigma) es un parámetro dependiente del material llamado conductividad. Esta reformulación de la ley de O hm se debe a Gustav Kirchhoff.

Unidad I

Página 7

Ley de Ampère En física del magnetismo, la ley de Ampère, modelada por André-Marie Ampère en 1831,1 relaciona un campo magnético estático con la causa, es decir, una corriente eléctrica estacionaria. James Clerk Maxwell la corrigió posteriormente y ahora es una de las ecuaciones de Maxwell, formando parte del electromagnetismo de la física clásica. La ley de Ampère explica que la circulación de la intensidad del campo magnético en un contorno cerrado es proporcional a la corriente que recorre en ese contorno. El campo magnético es un campo angular con forma circular, cuyas líneas encierran la corriente. La dirección del campo en un punto es tangencial al círculo que encierra la corriente. El campo magnético disminuye inversamente con la distancia al conductor. La ley de Ampère determina que la circulación del campo magnético a lo largo de una línea cerrada es equivalente a la suma algebraica de las intensidades de las corrientes que atraviesan la superficie delimitada por la línea cerrada, multiplicada por la permitividad del medio. En concreto para el vacío:

∮B→⋅dl→ =μ0⋅∑I la expresión incluye la suma de todas las intensidades que atraviesan la línea cerrada. Sin embargo, las intensidades pueden tener distintos sentidos y por ende unas se considerarán positivas y otras negativas. Para determinar el signo de las intensidades, en primer lugar, es necesario determinar el vector de superficie formado por la línea cerrada. Para ello, haremos uso de la regla de la mano derecha tal y como se muestra en la siguiente figura

Unidad I

Página 8

Ecuaciones de Maxwell Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones (originalmente 20 ecuaciones) que describen por completo los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos de campo y corriente de desplazamiento, unificando los campos eléctricos y magnéticos en un solo concepto: el campo electromagnético. Ley de Gauss para el campo eléctrico. La ley de Gauss explica la relación entre el flujo del campo eléctrico a través una superficie cerrada con la carga neta encerrada por dicha superficie. Se define como flujo eléctrico a la cantidad de fluido eléctrico que atraviesa una superficie dada. Análogo al flujo de la mecánica de fluidos, este fluido eléctrico no transporta materia, pero ayuda a analizar la cantidad de campo eléctrico que pasa por una superficie S. Matemáticamente se expresa como: La ley dice que el flujo del campo eléctrico a través de una superficie cerrada es igual al cociente entre la carga (q) o la suma de las cargas que hay en el interior de la superficie y la permitividad eléctrica en el vacío

La forma diferencial de la ley de Gauss, en forma local, afirma que por el teorema de GaussOstrogradsky, la divergencia del campo eléctrico es proporcional a la densidad de carga eléctrica, es decir,

Unidad I

Página 9

Bibliografia

https://www.lawebdefisica.com/dicc/maxwell/ https://www.fisicalab.com/apartado/ley-de-ampere https://es.wikipedia.org/wiki/Ley_de_Amp%C3%A8re https://www.fisimat.com.mx/ley-del-ohm/ https://leyes-de-fisica.fandom.com/es/wiki/Ley_de_Faraday https://www.significados.com/leyes-de-newton/ https://www.fisicalab.com/apartado/ley-de-lorentz

Unidad I

Página 10...


Similar Free PDFs