Caracteristicas Fisicas Y Mecanicas Acero PDF

Title Caracteristicas Fisicas Y Mecanicas Acero
Course Construcciones I
Institution Universidad Peruana Los Andes
Pages 5
File Size 222.1 KB
File Type PDF
Total Downloads 51
Total Views 140

Summary

tareas semanales dejadas en el curso...


Description

CARACTERÍSTICAS FÍSICAS Y MECÁNICAS DEL ACERO DE REFUERZO El acero de refuerzo es aquel que se coloca para absorber y resistir esfuerzos provocados por cargas y cambios volumétricos por temperatura y para quedar ahogado dentro de la masa del concreto, ya sea colado en obra o precolado. El acero de refuerzo es la varilla corrugada o lisa; además de los torones y cables utilizados para pretensados y potenzados. Otros elementos que se utilizan como refuerzo para el concreto son las mallas electro soldadas, castillos y cadenas electro soldadas (armex), escalerillas, etc.

1. CARACTERÍSTICAS MECÁNICAS. •Ductilidad, es la elongación que sufre la barra cuando se carga sin llegar a la rotura. Las especificaciones estipulan que el estiramiento total hasta la falla, no sea menor que cierto porcentaje mínimo (tabla 5.3) que varía con el tamaño y grado de la propia barra (apartado 5.7.1). •Dureza se define como la propiedad del acero a oponerse a la penetración de otro material (apartado 5.7.2). •Resistencia a la tensión, Es la máxima fuerza de tracción que soporta la barra, cuando se inicia la rotura, dividida por el área de sección inicial de la barra. Se denomina también, más precisamente, carga unitaria máxima a tracción. Límite de fluencia, fy.- Es la tensión a partir de la cual el material pasa a sufrir deformaciones permanentes, es decir, hasta este valor de tensión, si interrumpimos el traccionamiento de la muestra, ella volverá a su tamaño inicial, sin presentar ningún tipo de deformación permanente, esta se llama deformación elástica. El ingeniero utiliza el límite de fluencia de la barra para calcular la dimensión de la estructura, pues la barra soporta cargas y sobrecargas hasta este punto y vuelve a su condición inicial sin deformación. Pasado este punto, la estructura esta fragilizada y comprometida. En general, en el caso de los aceros de dureza natural, el límite de fluencia coincide con el valor aparente de la tensión correspondiente al escalón de cedencia. En los casos en que no aparece este escalón o aparece poco definido, como suele ocurrir con los aceros estirados en frío, es necesario recurrir al valor convencional establecido en las prescripciones, como se explica mas abajo, para aceros de resistencia mayor a 4200 Kg/cm2 Las barras con resistencias hasta 2800 Kg/cm2 presentan una curva elasto-plástica, como se ve en la figura 5.10 a), entonces fy se identifica con claridad.

Para aceros de resistencias mayores, hasta 4200 Kg/cm2, la curva esfuerzo-deformación unitaria puede ser elasto-plastica o no, dependiendo de las propiedades del acero y del procesos de fabricación. Para aceros de resistencias mayores a 4200 Kg/cm2, donde el grado de fluencia no esta definido, el código ACI especifica que el esfuerzo de fluencia, fy, debe determinarse como el esfuerzo que corresponde a una deformación de 0.0035 cm/cm, tal como se muestra en la probablemente, la resistencia en el punto de fluencia, es decir, el esfuerzo elástico máximo que puede soportar la barra, es la propiedad mecánica más importante para el diseñador. La resistencia a la tensión se controla por un límite sobre la resistencia en el punto de fluencia y esta no puede ser menor que 1.25 veces la resistencia real en el punto de fluencia. Si bien la tendencia actual, en la construcción con hormigón reforzado, es hacia el uso de barras de refuerzo con grado de resistencia más elevado, dado que el uso de estas conduce a una reducción significativa del tonelaje de acero y del tamaño de los miembros estructurales de hormigón, lo que da por resultado economía en la mano de obra y en otros materiales, se tiene un límite practico sobre cual fuerte debe ser el acero de refuerzo utilizado en una construcción estándar de Hormigón armado: Todas las resistencias del acero tienen aproximadamente la misma elongación para el mismo esfuerzo de tensión aplicado (mismo módulo de elasticidad Es=2.1*106 Kg/cm2). Si un acero tiene una resistencia en el punto de fluencia que es el doble de la de otro, puede aplicarse el doble de deformación permanente, esta se llama deformación elástica. El ingeniero utiliza el límite de fluencia de la barra para calcular la dimensión de la estructura, pues la barra soporta cargas y sobrecargas hasta este punto y vuelve a su condición inicial sin deformación. Pasado este punto, la estructura esta fragilizada y comprometida. En general, en el caso de los aceros de dureza natural, el límite de fluencia coincide con el valor aparente de la tensión correspondiente al escalón de cedencia (figura 5.10 a). En los casos en que no aparece este escalón o aparece poco definido, como suele ocurrir con los aceros estirados en frío, es necesario recurrir al valor convencional establecido en las prescripciones, como se explica mas abajo, para aceros de resistencia mayor a 4200 Kg/cm2. Las barras con resistencias hasta 2800 Kg/cm2 presentan una curva elasto-plástica, como se ve en la figura 5.10 a), entonces fy se identifica con claridad. Para aceros de resistencias mayores, hasta 4200 Kg/cm2, la curva esfuerzo-deformación unitaria puede ser elasto-plastica o no, dependiendo de las propiedades del acero y del procesos de fabricación. Para aceros de resistencias mayores a 4200 Kg/cm2, donde el grado de fluencia no esta definido, el código ACI especifica que el esfuerzo de fluencia, fy, debe determinarse como el esfuerzo que corresponde a una deformación de 0.0035 cm/cm, tal como se muestra en la figura 5.11.

Probablemente, la resistencia en el punto de fluencia, es decir, el esfuerzo elástico máximo que puede soportar la barra, es la propiedad mecánica más importante para el diseñador. La resistencia a la tensión se controla por un limite sobre la resistencia en el punto de fluencia y esta no puede ser menor que 1.25 veces la resistencia real en el punto de fluencia. Si bien la tendencia actual, en la construcción con hormigón reforzado, es hacia el uso de barras de refuerzo con grado de resistencia más elevado, dado que el uso de estas conduce a una reducción significativa del tonelaje de acero y del tamaño de los miembros estructurales de hormigón, lo que da por resultado economía en la mano de obra y en otros materiales, se tiene un limite practico sobre cuan fuerte debe ser el acero de refuerzo utilizado en una construcción estándar de Hormigón armado: Todas las resistencias del acero tienen aproximadamente la misma elongación para el mismo esfuerzo de tensión aplicado (mismo modulo de elasticidad Es=2.1*106 Kg/cm2). Si un acero tiene una resistencia en el punto de fluencia que es el doble de la de otro, puede aplicarse el doble de esfuerzo, pero se obtendrá el doble de elongación. Con cargas moderadas, el refuerzo de acero se estirará casi lo mismo que lo que puede estirarse el hormigón que lo rodea sin agrietarse severamente; si se aplica más carga, el acero puede soportar la carga con seguridad, pero el hormigón que lo cubre se agrietará. Esto no sólo da mal aspecto sino que, en general, permitirá la corrosión del refuerzo.

FIGURA 5.10 a) Diagrama Esfuerzo Deformación para Aceros de Dureza Natural Laminados en Caliente. b) curvas típicas esfuerzo-deformación unitarias para barras de refuerzo Nota: Las curvas están indicadas según su límite de fluencia

FIGURA 5.11 4200 kg/cm2

Diagrama Esfuerzo Deformación para Aceros de resistencia mayor a

En general, no se puede usar la mayor resistencia de los aceros con resistencias en el punto de fluencia de 4200 Kg/cm2, como refuerzo estándar a la tracción, sin causar el agrietamiento del hormigón, a menos que se tomen disposiciones especiales en el diseño del miembro. •Maleabilidad, es la capacidad que presenta el acero de soportar la deformación, sin romperse, al ser sometido a un esfuerzo de compresión. •Tenacidad, viene siendo la conjugación de dos propiedades: ductilidad y resistencia. Un material tenaz será aquel que posee una buena ductilidad y una buena resistencia al mismo tiempo. •Fatiga, cuando un elemento estructural se somete a cargas cíclicas, este puede fallar debido a las grietas que se forman y propagan, en especial cuando se presentan inversiones de esfuerzos, esto es conocido como falla por fatiga, que puede ocurrir con esfuerzos menores a la carga de deformación remanente. Límite de fatiga. Se evalúa en un diagrama Esfuerzo máximo (resistencia a la fatiga) vs. el número de ciclos hasta la falla, estos diagramas indican que la resistencia a la fatiga, de un acero estructural, decrece con un aumento de número de ciclos, hasta que se alcanza un valor mínimo que es el límite de Fatiga. Con la tracción considerada

como positiva y la compresión negativa, las pruebas también demuestran que a medida que disminuye la relación entre el esfuerzo máximo y el mínimo, se reduce de modo considerable la resistencia al a fatiga. Las pruebas indican además que los aceros con resistencia a la tracción semejante tienen casi la misma resistencia a la fatiga. Estas propiedades se determinan mediante la realización de diferentes pruebas o ensayos, para determinar qué material es el que emplearemos para el fin que le queramos dar. En la tabla 5.3 se dan algunas características mecánicas para diferentes grados y clases de aceros.

(1). AH = Acero para Hormigón (DN = Dureza Natural; EF = Estirado en Frío) (2). Para el cálculo de valores unitario se utilizará la sección nominal. (3). Relación mínima admisible entre los valores de la carga unitaria de rotura y del límite elástico, obtenidos en cada ensayo...


Similar Free PDFs