Investigacion unidad 6 Maquinas de fluidos compresibles 16470331 PDF

Title Investigacion unidad 6 Maquinas de fluidos compresibles 16470331
Author cesar leonardo chavez chan
Course Diseño de sistemas de Aire Acondicionado
Institution Instituto Tecnológico de Campeche
Pages 7
File Size 289.3 KB
File Type PDF
Total Downloads 774
Total Views 847

Summary

TECNOLOGICO NACIONAL DE MÉXICOINSTITUTO TECNOLOGICO DE CAMPECHEINGIENERIA MECANICAMAQUINAS DE FLUIDOS COMPRESIBLESDOCENTE:JOSE RICARDO LAZCANO PACHECOALUMNO:CESAR LEONARDO CHAVEZ CHANINVESTIGACION DE LA UNIDAD 6VC-SAN FRANCISCO DE CAMPECHE, CAMPECHE, 11 DE DICIEMBRE DEL 2020TURBINAS DE GASCiclo Bray...


Description

TECNOLOGICO NACIONAL DE MÉXICO INSTITUTO TECNOLOGICO DE CAMPECHE

INGIENERIA MECANICA

MAQUINAS DE FLUIDOS COMPRESIBLES

DOCENTE:

JOSE RICARDO LAZCANO PACHECO

ALUMNO:

CESAR LEONARDO CHAVEZ CHAN

INVESTIGACION DE LA UNIDAD 6

VC-7 SAN FRANCISCO DE CAMPECHE, CAMPECHE, 11 DE DICIEMBRE DEL 2020

1

TURBINAS DE GAS Ciclo Brayton El modelo termodinámico de las turbinas de gas se fundamenta en el ciclo de Brayton, a pesar de que se generaliza como ciclo termodinámico, en realidad el fluido de trabajo no cumple un ciclo completo en las turbinas de gas ya que este finaliza en un estado diferente al que tenía cuando inició los procesos, se podría decir que es un ciclo abierto. Las turbinas de gas de ciclo abierto simple utilizan una cámara de combustión interna para suministrar calor al fluido de trabajo y las turbinas de gas de ciclo cerrado simple utilizan un proceso de transferencia para agregar o remover calor del fluido de trabajo. El ciclo básico de Brayton en condiciones ideales está compuesto por cuatro procesos: 1-2. Compresión isentrópica en un compresor. 2-3. Adición de calor al fluido de trabajo a presión constante en un intercambiador de calor o una cámara de combustión. 3-4. Expansión isentrópica en una turbina. 4-1. Remoción de calor del fluido de trabajo a presión constante en un intercambiador de calor o en la atmósfera. Admisión El aire frío y a presión atmosférica entra por la boca de la turbina Compresor El aire es comprimido y dirigido hacia la cámara de combustión mediante un compresor (movido por la turbina). Puesto que esta fase es muy rápida, se modela mediante una compresión adiabática A→B. Cámara de combustión En la cámara, el aire es calentado por la combustión del queroseno. Puesto que la cámara está abierta el aire puede expandirse, por lo que el calentamiento se modela como un proceso isóbaro B→C. 2

Turbina El aire caliente pasa por la turbina, a la cual mueve. En este paso el aire se expande y se enfría rápidamente, lo que se describe mediante una expansión adiabática C →D. Escape Por último, el aire enfriado (pero a una temperatura mayor que la inicial) sale al exterior. Técnicamente, este es un ciclo abierto ya que el aire que escapa no es el mismo que entra por la boca de la turbina, pero dado que sí entra en la misma cantidad y a la misma presión, se hace la aproximación de suponer una recirculación. En este modelo el aire de salida simplemente cede calor al ambiente y vuelve a entrar por la boca ya frío. En el diagrama PV esto corresponde a un enfriamiento a presión constante D→A. Existen de hecho motores de turbina de gas en los que el fluido efectivamente recircula y solo el calor es cedido al ambiente. Para estos motores, el modelo del ciclo de Brayton ideal es más aproximado que para los de ciclo abierto. EFICIENCIA Y CURVA DE EXPANSIÓN REAL De los cuatro procesos que forman el ciclo cerrado, no se intercambia calor en los procesos adiabáticos A→B y C→D, por definición. Sí se intercambia en los dos procesos isóbaros. En la combustión B→C, una cierta cantidad de calor Qc (procedente de la energía interna del combustible) se transfiere al aire. Dado que el proceso sucede a presión constante, el calor coincide con el aumento de la entalpía

El subíndice "c" viene de que este calor se intercambia con un supuesto foco caliente. En la expulsión de los gases D→A el aire sale a una temperatura mayor que a la entrada, liberando posteriormente un calor | Qf | al ambiente. En el modelo de sistema cerrado, en el que nos imaginamos que es el mismo aire el que se comprime una y otra vez en el motor, modelamos esto como que el calor | Qf | es liberado en el proceso D→A, por enfriamiento. El valor absoluto viene de que, siendo un calor que sale del sistema al ambiente, su signo es negativo. Su valor, análogamente al caso anterior, es

3

El subíndice "f" viene de que este calor se cede a un foco frío, que es el ambiente. CAMARAS DE COMBUSTION El calor se introduce en las turbinas de gas a través de la cámara de combustión. Esta cámara recibe el aire comprimido proveniente del compresor y lo envía a una elevada temperatura hacia la turbina expansora, idealmente sin pérdida de presión. De esta forma, la cámara de combustión es un calentador de aire donde el combustible, mezclado con mucha mayor cantidad de aire que lo que correspondería a una mezcla estequiométrica aire-gas. Existen varios tipos de cámaras de combustión, pero en general pueden agruparse en tres categorías: las anulares, las tuboanulares y las tipo silo. La cámara de combustión anular La cámara de combustión anular es la solución adoptada principalmente por Alstom y Siemens para sus turbinas industriales, y en general, es la que suelen implementar la práctica totalidad de las turbinas aeroderivadas. Esta disposición supone que existe una única cámara en forma de anillo que rodea al eje del compresor-turbina; dicha cámara consta de un solo tubo de llama, también anular, y una serie de inyectores o quemadores, cuyo número puede oscilar entre 12 y 25 repartidos a lo lardo de todo la circunferencia que describe la cámara. El aire entra en el espacio entre el interior de la cámara a través de los diferentes huecos y ranuras por simple presión diferencial. El diseño de estos huecos y ranuras divide la cámara en diferentes zonas, para facilitar la estabilidad de llama, la combustión, la dilución y para crear una fina capa de enfriamiento en las paredes de ésta.

4

Cámaras de combustión tuboanulares Las cámaras de combustión tuboanulares están formadas por grupos de cámaras tubulares que se montan en el interior de un cilindro. Este diseño trata de combinar las virtudes de los anteriores buscando la robustez de las tubulares combinada con la compacidad de las anulares. Es frecuente encontrar entre seis y diez cámaras tubulares ensambladas en el interior de la envolvente anular. El flujo de aire puede ser directo o inverso dependiendo de la aplicación. En este tipo de cámara de combustión se requiere una mayor cantidad de aire de refrigeración que en las tubulares y las anulares ya que la superficie del quemador es mayor. El flujo de gases en estos equipos es más estable que en las anulares debido a que cada zona del anillo tiene su propia tobera y en consecuencia una primera zona independiente de las demás. Camaras de combustión tipo silo o tubulares Las cámaras de combustión tubulares o tipo silo tienen forma cilíndrica y están montadas de manera concéntrica en el interior de otro cilindro. Las principales ventajas que presentan son su simplicidad, su fácil diseño y su fácil acceso. Como problema presentan que son grandes y pesadas en comparación a otros tipos de cámara de combustión y por ello su aplicación está relegada únicamente a la industria. Cámaras de combustión tipo Silo: Este tipo de turbinas tienen la cámara de combustión fuera del eje que une la turbina y el compresor, puesto en la parte superior, los inyectores se instalan atravesando el techo superior de la cámara, y los gases de escape llegan a la turbina de expansión por una abertura inferior conectada a ésta, son turbinas que por ahora se utilizan para combustibles experimentales como el hidrógeno.

5

REGENERADORES En ocasiones se presenta que la temperatura de los gases a la salida de la turbina en el ciclo Brayton es mayor que la temperatura del aire a la salida del compresor. El ciclo regenerativo aprovecha esta diferencia de temperaturas para transferir a un regenerador o intercambiador de calor, energía térmica de los gases que salen de la turbina, al aire que sale del compresor.

En el caso representado en el diagrama T-s, la temperatura (Ts) de los gases que salen de la turbina en el estado 5 es mayor que la temperatura (T2) del aire que sale del compresor en el estado 2. En el regenerador, los gases ceden su calor al aire comprimido desde el estado 5 hasta el estado 6 cuando son evacuados a la atmósfera. En el caso ideal, el aire comprimido en el estado 2 tendrá la misma temperatura de los gases en el estado 6 y de igual manera la temperatura del aire en el estado 3 será la misma que la de los gases en el estado 5. En consecuencia, el calor suministrado en la cámara de combustión será únicamente el necesario para elevar la temperatura de (T3) a (T4) y no de (T2) a (T4).

6

El trabajo neto desarrollado en el ciclo regenerativo 1-2-3-4-5-6, es el mismo que en el ciclo Brayton simple 1-2-4-1 ya que le trabajo realizado por el compresor y el trabajo producido por la turbina no varía en los dos casos. Sin embargo, al requerirse un menor calor de adición para elevar la temperatura al valor máximo del ciclo (T4), se obtendrán eficiencias térmicas más favorables para el ciclo regenerativo.

En el caso ideal, se considera que una diferencial infinitesimal en la diferencia de temperatura es suficiente para que el calor fluya en el regenerador de los gases que salen de la turbina al aire que sale del compresor. En el caso real, se requiere más que una diferencia infinitesimal y por lo tanto no se puede decir que (T3) es igual a (T5), ni que (T2) es igual a (T6). La diferencia de temperaturas (T3 – Tx) requerida por el regenerador para transferir energía térmica de un fluido al otro define su eficiencia:

7...


Similar Free PDFs