Notação indicial - completo PDF

Title Notação indicial - completo
Author José Delábio
Pages 15
File Size 528.6 KB
File Type PDF
Total Downloads 63
Total Views 261

Summary

A-1 Apêndice A NOTAÇÃO INDICIAL A notação indicial é uma forma compacta de se representar e manipular sistemas de equações, combinações lineares e somatórios. Foi introduzida por Einstein para denotar grandezas em espaços de dimensão superior a 3. Embora vários conceitos em Mecânica d...


Description

A-1

Apˆ endice A

˜ INDICIAL NOTAC ¸ AO A nota¸c˜ao indicial ´e uma forma compacta de se representar e manipular sistemas de equa¸c˜oes, combina¸c˜oes lineares e somat´ orios. Foi introduzida por Einstein para denotar grandezas em espa¸cos de dimens˜ao superior a 3. Embora v´arios conceitos em Mecˆanica do Cont´ınuo possam ser introduzidos empregando a nota¸c˜ao indicial, limita-se o seu uso neste texto. De forma geral, ao se empregar ´ındices, pode haver uma confus˜ao entre a defini¸c˜ao do conceito e a sua representa¸ca˜o em nota¸ca˜o indicial. Por exemplo, um vetor v ´e dado pela diferen¸ca de pontos do espa¸co euclidiano, enquanto a representa¸ca˜o em nota¸c˜ao indicial ´e indicada como vi . Logo, a defini¸c˜ao de vetor ´e independente da sua representa¸c˜ao em nota¸ca˜o indicial. No entanto, em v´arias situa¸c˜oes, a nota¸c˜ao indicial ´e bastante u ´til, como por exemplo ao se trabalhar com equa¸c˜oes constitutivas de materiais. Neste texto, emprega-se a nota¸ca˜o direta para a defini¸c˜ao de conceitos, sendo a nota¸c˜ao indicial usada apenas para ilustrar e operar sobre os conceitos j´ a definidos. Basicamente, deve-se definir o conceito de nota¸c˜ao indicial, o significado de ´ındices repetidos e livres e as opera¸c˜oes empregando estes ´ındices.

A.1

Defini¸c˜ ao de Nota¸ c˜ ao Indicial

Um conjunto de vari´aveis x1 , x2 , . . . , xn ´e geralmente denotado como xi (i = 1, 2, . . . , n). Quando escrito isoladamente, o s´ımbolo xi indica qualquer uma das vari´aveis x1 , x2 , . . . , xn . O intervalo de varia¸c˜ao do ´ındice i (i = 1, 2, . . . , n) deve ser sempre dado. Este ´ındice pode ser denotado como um subscrito ou sobrescrito, ou seja, xi ou xi s˜ao ambos v´alidos. Um sistema de nota¸co˜es usando ´ındices ´e denominado nota¸c˜ ao indicial.

A.2

Conven¸c˜ ao de Somat´ orio

Considere a equa¸c˜ao de um plano no sistema de referˆencia cartesiano tridimensional com eixos x1 , x2 , x3 a1 x1 + a2 x2 + a3 x3 = p,

(A.1)

sendo a1 , a2 , a3 e p constantes. Usualmente, a express˜ ao anterior ´e escrita como ax + by + cz = d. A nota¸c˜ao indicial permite escrever as express˜ oes numa forma compacta. Desta maneira, denotam-se as express˜ oes como em (A.1). Essa equa¸c˜ao pode ser escrita em termos do seguinte somat´ orio 3 X i=1

ai xi = p.

(A.2)

A.2. Conven¸ c˜ ao de Somat´ orio

A-2

Introduzindo a conven¸c˜ ao de somat´ orio, denota-se a equa¸c˜ao anterior como ai xi = p.

(A.3)

A conven¸c˜ao ´e a seguinte: a repeti¸c˜ ao de um ´ındice num termo representar´ a um somat´ orio com respeito a esse ´ındice no seu intervalo de varia¸c˜ ao. O intervalo de varia¸c˜ao de um ´ındice ´e o conjunto de n´ umeros inteiros de 1 a n. Em geral, na Mecˆanica do Cont´ınuo, n ser´ a 1, 2 ou 3 respectivamente para problemas uni, bi e tridimensionais. Como este ´ındice ´e empregado apenas para uma soma ´e chamado ´ındice falso ou repetido, pois o s´ımbolo usado no somat´orio se torna indiferente no resultado final. Assim, por exemplo ai xi pode ser denotado como aj xj sem alterar o significado da express˜ao. Um ´ındice que n˜ao ´e somado ´e denominado ´ındice livre e indica o n´ umero de equa¸c˜oes associado ao termo em nota¸ca˜o indicial. Observe os exemplos a seguir, onde i e k representam ´ındices livres, enquanto j ´e um ´ındice repetido. Exemplo A.1 Expandir a express˜ ao bij cj dada em nota¸c˜ ao indicial para i, j = 1, 2, 3. Neste caso, j ´e um ´ındice repetido pois aparece duas vezes no termo bij cj . Aplica-se ent˜ ao a conven¸c˜ ao do somat´ orio, ou seja, bij cj =

3 X

bij cj = bi1 c1 + bi2 c2 + bi3 c3 .

j=1

Por sua vez, i ´e um ´ındice n˜ ao-repetido ou livre e seu intervalo de varia¸c˜ ao tamb´em ´e de 1 a 3. Cada valor de i corresponder´ a a uma equa¸ca ˜o. Logo, tomando a express˜ ao anterior vem que i = 1 → b11 c1 + b12 c2 + b13 c3 , i = 2 → b21 c1 + b22 c2 + b23 c3 , i = 3 → b31 c1 + b32 c2 + b33 c3 . Portanto, bij cj representa as 3 equa¸c˜ oes seguintes    b11 c1 + b12 c2 + b13 c3

bij cj =

b c +b c +b c

21 1 22 2 23 3   b c +b c +b c 31 1 32 2 33 3

.

Verifica-se ainda que as 3 express˜ oes anteriores indicam o produto de uma matriz [B] por um vetor {c}, ou seja, 



b11 b12 b13   c1   bij cj = [B]{c} =  b21 b22 b23  c2  b31 b32 b33  c3

    

.

2 ao indicial para i, j, k = 1, 2, 3. Exemplo A.2 Expandir a express˜ ao αij βjk em nota¸c˜ Observa-se que j ´e um ´ındice repetido e aplica-se a conven¸c˜ ao do somat´ orio, ou seja, αij βjk =

3 X

αij βjk = αi1 β1k + αi2 β2k + αi3 β3k .

j=1

Neste caso, i e k s˜ ao ´ındices livres e para cada ´ındice deve-se expandir 3 equa¸c˜ oes resultando num total de 9 equa¸c˜ oes. Considerando o ´ındice i inicialmente vem que    α11 β1k + α12 β2k + α13 β3k

αi1 β1k + αi2 β2k + αi3 β3k =

α β

+α β

+α β

21 1k 22 2k 23 3k   α β +α β +α β 31 1k 32 2k 33 3k

.

A.2. Conven¸ c˜ ao de Somat´ orio

A-3

Para cada um das 3 equa¸c˜ oes anteriores, expande-se o ´ındice k. Logo,    α11 β11 + α12 β21 + α13 β31

α11 β1k + α12 β2k + α13 β3k =

11 12 12 22 13 32   α β +α β +α β 11 13 12 23 13 33    α21 β11 + α22 β21 + α23 β31

α21 β1k + α22 β2k + α23 β3k =

21 12 22 22 23 32   α β +α β +α β 21 13 22 23 23 33    α31 β11 + α32 β21 + α33 β31

α31 β1k + α32 β2k + α33 β3k =

31 12 32 22 33 32   α β +α β +α β 31 13 32 23 33 33

α β

+α β

+α β

,

α β

+α β

+α β

,

α β

+α β

+α β

.

Portanto, a express˜ ao αij βjk em nota¸c˜ ao indicial com i, j, k = 1, 2, 3 representa as 9 equa¸c˜ oes anteriores, as quais podem ser denotadas matricialmente como o seguinte produto de duas matrizes [α] e [β] de ordem 3 

αij βjk





α11 α12 α13 β11 β12 β13    = [α][β] =  α21 α22 α23   β21 β22 β23  . α31 α32 α33 β31 β32 β33

2 Verifica-se, ent˜ao, que um ´ındice repetido faz com que a express˜ ao cres¸ca na dire¸c˜ao horizontal ao se aplicar a conven¸c˜ao do somat´orio. Por sua vez, o ´ındice livre indica o n´ umero total de equa¸c˜oes, fazendo com que a express˜ao em nota¸c˜ao indicial se expanda na dire¸c˜ao vertical. Esta id´eia est´a ilustrada na Figura A.1. Nos exemplos anteriores, o ´ındice repetido j ´e somado de 1 a 3 abrindo as express˜ oes horizontalmente. J´ a os ´ındices livres i e k indicam o n´ umero de equa¸c˜oes na dire¸c˜ao vertical. No segundo exemplo, como se tem dois ´ındices livres (i e k), deve-se expandir cada um deles no intervalo de 1 a 3, obtendo-se um total de 9 equa¸c˜oes. Considere agora mais dois exemplos.

Figura A.1: ´Indices livre e repetido. Exemplo A.3 Considere a express˜ ao em nota¸c˜ ao indicial yi = aim xm (i, m = 1, 2, 3). Observa-se que i ´e um ´ındice livre enquanto m ´e um ´ındice repetido. A express˜ ao yi = aim xm (i, m = 1, 2, 3) representa um sistema de equa¸c˜ oes como pode ser visto pelo desenvolvimento dos ndices a seguir. Expandindo o ´ındice livre i e aplicando a conven¸c˜ ao de somat´ orio para m vem que yi = aim xm

 P3   y1 = a1m xm = Pm=1 a1m xm = a11 x1 + a12 x2 + a13 x3 = y2 = a2m xm = 3m=1 a2m xm = a21 x1 + a22 x2 + a23 x3 . P3  

y3 = a3m xm =

m=1

a3m xm = a31 x1 + a32 x2 + a33 x3

A.3. Delta de Kronecker

A-4

A express˜ ao anterior representa um sistema de equa¸c˜ oes da forma {y} = [A]{x}, ou seja,     y1  





a11 a12 a13   x1   y2 =  a21 a22 a23  x2    y   a31 a32 a33  x3 3

    

.

2 ao ´ındices livres enquanto Exemplo A.4 Na express˜ ao Tij = aim xjm (i, j, m = 1, 2, 3) tem-se que i e j s˜ m ´e um ´ındice repetido. Logo, expandindo os ´ındices livres i e j tem-se 9 equa¸c˜ oes e aplicando a conven¸c˜ ao de somat´ orio para cada uma delas vem que                               

T11 T12 T13 T21 T22 T23 T31 T32 T33

= a1m x1m = a1m x2m = a1m x3m = a2m x1m = a2m x2m = a2m x3m = a3m x1m = a3m x2m = a3m x3m

P

= 3m=1 P = 3m=1 P = 3m=1 P = 3m=1 P = 3m=1 P = 3m=1 P = 3m=1 P = 3m=1 P = 3m=1

a1m x1m a1m x2m a1m x3m a2m x1m a2m x2m a2m x3m a3m x1m a3m x2m a3m x3m

= a11 x11 + a12 x12 + a13 x13 = a11 x21 + a12 x22 + a13 x23 = a11 x31 + a12 x32 + a13 x33 = a21 x11 + a22 x12 + a23 x13 = a21 x21 + a22 x22 + a23 x23 . = a21 x31 + a22 x32 + a23 x33 = a31 x11 + a32 x12 + a33 x13 = a31 x21 + a32 x22 + a33 x23 = a31 x31 + a32 x32 + a33 x33

As equa¸co ˜es anteriores podem ser escritas na forma matricial [T ] = [A][X]T , ou seja, 









T11 T12 T13 a11 a12 a13 x11 x21 x31       T21 T22 T23  =  a21 a22 a23   x12 x22 x32  . T31 T32 T33 a31 a32 a33 x13 x23 x33 2 Observa-se que uma equa¸c˜ao do tipo Tij = Tik n˜ao tem significado em nota¸c˜ao indicial, pois i, j e k s˜ao todos ´ındices livres, ou seja, aparecem uma u ´nica vez nos termos do lado esquerdo e direito. Al´em disso, express˜ oes como ai bi ci n˜ao s˜ao definidas na nota¸ca˜o indicial, pois um ´ındice nunca pode ser repetido mais de uma vez. Neste u ´ltimo caso, mant´em-se o sinal de somat´ orio, ou seja,

3 P

ai bi ci . Verifica–se ainda

i=1

que a express˜ao yi = aim xm (i, m = 1, 2, 3) ´e a mesma que yj = ajm xm (j, m = 1, 2, 3), ou seja, a letra usada para denotar o ´ındice repetido n˜ao altera o resultado final. No entanto, ai = bj ´e uma express˜ ao sem significado. O ´ındice livre presente em cada termo de uma equa¸ca˜o deve ser o mesmo, como por exemplo ai + bi = ci , ai + bi cj dj

= 0,

sendo i um ´ındice livre e j um ´ındice repetido.

A.3

Delta de Kronecker

O s´ımbolo δij (i, j = 1, 2, 3) ´e denominado delta de Kronecker e definido como (

δij =

0 se i 6= j . 1 se i = j

(A.4)

A.3. Delta de Kronecker

A-5

Como i e j s˜ao ´ındices livres no termo δij e ambos variam de 1 a 3, tem-se um total de 9 valores dados segundo a defini¸c˜ao de δij por δ11 = δ22 = δ33 = 1,

(A.5)

δ12 = δ21 = δ13 = δ31 = δ23 = δ32 = 0.

(A.6)

Em nota¸c˜ao matricial, tem-se 







δ11 δ12 δ13 1 0 0      δ21 δ22 δ23  =  0 1 0  , 0 0 1 δ31 δ32 δ33 ou seja, o delta de Kronecker se reduz `a matriz identidade de ordem 3, podendo ser denotado como [δij ] = [I]. Exemplo A.5 Empregando-se as conven¸c˜ oes da nota¸c˜ ao indicial e os valores dados em (A.5), mostrar as seguintes propriedades do delta de Kronecker. 1. δii = 3. Neste caso, i ´e um ´ındice repetido e aplicando a conven¸c˜ ao do somat´ orio δii =

3 X

δii = δ11 + δ22 + δ33 = 1 + 1 + 1 = 3.

i=1

2. δim am = ai . Verifica-se que i ´e um ´ındice livre. Variando-se i de 1 a 3, tem-se 3 equa¸c˜ oes. J´ a m ´e um ´ındice repetido e aplica-se a conven¸c˜ ao do somat´ orio. Portanto

δim am

 P 3   Pm=1 δ1m am = δ11 a1 + δ12 a2 + δ13 a3 = a1 3 = m=1 δ2m am = δ21 a1 + δ22 a2 + δ23 a3 = a2 = ai . P   3 m=1 δ3m am

= δ31 a1 + δ32 a2 + δ33 a3 = a3

3. δim Tmj = Tij . Os ´ındices i e j s˜ ao livres enquanto m ´e um ´ındice repetido. Logo, expandindo o ´ındice livre i e aplicando a conven¸c˜ ao do somat´ orio para m vem que

δim Tmj

 P 3   Pm=1 δ1m Tmj = δ11 T1j + δ12 T2j + δ13 T3j = T1j 3 = m=1 δ2m Tmj = δ21 T1j + δ22 T2j + δ23 T3j = T2j P   3 m=1 δ3m Tmj

= Tij .

= δ31 T1j + δ32 T2j + δ33 T3j = T3j

Em particular δim δmj = δij

e

δim δmj δjn = δim δmn = δin .

(A.7)

4. δij δji = 3. Observa-se que i e j s˜ ao ´ındices repetidos e deve-se aplicar a conven¸c˜ ao do somat´ orio, ou seja, δij δji =

3 X i,j=1

δij δji =

3 X 3 X i=1 j=1

δij δji =

3 X

δ1j δj1 + δ2j δj2 + δ3j δj3

j=1

= (δ11 δ11 + δ21 δ12 + δ31 δ13 ) + (δ12 δ21 + δ22 δ22 + δ32 δ23 ) + (δ13 δ31 + δ23 δ32 + δ33 δ33 ).

A.4. S´ Imbolo de Permuta¸ c˜ ao

A-6

Substituindo os valores dados em (A.5), tem-se que δij δji = 3.

(A.8)

5. Se e1 , e2 , e3 s˜ ao vetores unit´ arios perpendiculares entre si, o produto interno ou escalar vetores pode ser escrito como ei · ej = δij .

1

destes

(A.9)

2

A.4

S´ımbolo de Permuta¸c˜ ao

A Figura A.2 ilustra os ´ındices i, j, k e 1, 2, 3 ordenados nos sentidos hor´ ario e anti-hor´ ario. Utilizam-se estes ´ındices para definir o s´ımbolo de permuta¸ca˜o eijk da seguinte forma    e123 = e231 = e312 = 1

e

=e

213 132   e =0 ijk

= e321 = −1

1, 2, 3 no sentido hor´ ario 1, 2, 3 no sentido anti-hor´ario . nos demais casos

(A.10)

Em outras palavras, o termo eijk se anula sempre que os valores de quaisquer dois ´ındices coincidem, como por exemplo e112 = 0. Por sua vez, eijk = 1 quando os subscritos permutam na ordem 1, 2, 3, ou seja, no sentido hor´ ario. Finalmente, eijk = −1 caso a permuta¸ca˜o seja no sentido hor´ ario.

(a) 123 em sentido hor´ ario.

(b) 123 em sentido antihor´ ario.

(c) ijk em sentido hor´ ario.

(d) ijk em sentido anti-hor´ ario.

Figura A.2: S´ımbolo de permuta¸ca˜o. Como exemplo de aplica¸c˜ao, considere o determinante |A| de uma matriz [A] a 11 |A| = a21 a31

a12 a13 a22 a23 a32 a33

= a11 a22 a33 + a21 a32 a13 + a31 a12 a23 − a11 a32 a23 − a21 a12 a33 − a31 a22 a13 .

A equa¸c˜ao anterior pode ser denotada como |A| = eijk ai1 aj2 ak3 =

3 X i,j,k=1

1

Ver Se¸c˜ aoB.1.

eijk ai1 aj2 ak3 =

3 X 3 X 3 X i=1 j=1 k=1

eijk ai1 aj2 ak3 ,

(A.11)

A.4. S´ Imbolo de Permuta¸ c˜ ao

A-7

sendo i, j, k ´ındices livres e eijk o s´ımbolo de permuta¸ca˜o. O delta de Kronecker e o s´ımbolo de permuta¸c˜ao est˜ao associados pela identidade (ver exerc´ıcio resolvido A.3) eijm eklm = δik δjl − δil δjk ,

(A.12)

como pode ser comprovado manipulando-se os ´ındices. Exemplo A.6 Mostrar que as seguintes rela¸c˜ oes expressas em nota¸c˜ ao indicial s˜ ao v´ alidas. 1. eijk ejki = 6. Neste caso, i, j e k s˜ ao ´ındices repetidos e aplicando a conven¸c˜ ao do somat´ orio eijk ejki =

3 X

eijk ejki =

3 X 3 3 X X

eijk ejki =

i=1 j=1 k=1

i,j,k=1

3 3 X X

eij1 ej1i + eij2 ej2i + eij3 ej3i

i=1 j=1

Lembrando a defini¸c˜ ao (A.10) do s´ımbolo de permuta¸c˜ ao, tem-se que eijk ´e igual a zero quando pelo menos dois ´ındices s˜ ao iguais (por exemplo, e112 = e212 = e211 = 0). Logo, na express˜ ao anterior o somat´ orio em j para cada termo do lado direito se reduz a 3 X

eij1 ej1i =

i,j=1 3 X

ei11 e11i + ei21 e21i + ei31 e31i =

i=1

eij2 ej2i =

i,j 3 X

3 X

eij3 ej3i =

i,j=1

3 X

3 X

ei21 e21i + ei31 e31i ,

i,ji=1

ei12 e12i + ei22 e22i + ei32 e32i =

3 X

i

i=1

3 X

3 X

ei13 e13i + ei23 e23i + ei33 e33i =

i=1

ei12 e12i + ei32 e32i , ei13 e13i + ei23 e23i .

i=1

Portanto, somando as 3 express˜ oes anteriores eijk ejki =

3 X

ei21 e21i + ei31 e31i + ei12 e12i + ei32 e32i + ei13 e13i + ei23 e23i .

i=1

De forma an´ aloga, expandindo o somat´ orio em i e mantendo apenas os termos n˜ ao-nulos do s´ımbolo de permuta¸ca ˜o (ver defini¸c˜ ao (A.10)) vem que eijk ejki = e321 e213 + e231 e312 + e312 e123 + e132 e321 + e213 e132 + e123 e231 = (−1)(−1) + (1)(1) + (1)(1) + (−1)(−1) + (−1)(−1) + (1)(1) = 6. 2. eijk aj ak = 0. De forma an´ aloga ao caso anterior, i ´e um ´ındice livre enquanto j e k s˜ ao ´ındices repetidos. Logo, expandindo i, empregando a conven¸c˜ ao do somat´ orio para i e j e a defini¸c˜ ao (A.10), tem-se que a express˜ ao eijk aj ak ´e equivalente a  P 3   Pj,k=1 e1jk aj ak = e123 a2 a3 + e132 a3 a2 = a2 a3 − a3 a2 = 0 3 eijk aj ak = j,k=1 e2jk aj ak = e213 a1 a3 + e231 a3 a1 = a1 a3 − a3 a1 = 0 .  P  3 j,k=1 e3jk aj ak

= e312 a1 a2 + e321 a2 a1 = a1 a2 − a2 a1 = 0

Logo, como resultado final tem-se que eijk aj ak = 0.

A.5. Opera¸ c˜ oes

A-8

3. δij eijk = 0. Lembre-se que o delta de Kronecker δij ´e igual a 1 apenas quando i = j. Para i = j, tem-se que δij eijk = δii eiik = (1)eiik . Mas o s´ımbolo de permuta¸c˜ ao eijk ´e zero sempre que dois ´ındices s˜ ao iguais. Logo, quando i = j, tem-se que δij eijk = δii eiik = (1)(0) = 0. 2

A.5

Opera¸c˜ oes

A seguir apresentam-se opera¸c˜oes envolvendo a nota¸c˜ao indicial.

A.5.1

Substitui¸c˜ ao

Considere as seguinte rela¸c˜oes ai = Uim bm ,

(A.13)

bi = Vim cm .

(A.14)

Observa-se que o termo b aparece nas duas rela¸c˜oes mas com ´ındices distintos. Deseja-se substituir b dado em (A.14) na express˜ao (A.13). Para isso, muda-se o ´ındice livre de i para m em (A.14), obtendo-se bm = Vmm cm . No entanto, a express˜ao resultante n˜ao ´e v´alida em nota¸c˜ao nota¸c˜ao indicial, pois o ´ındice m est´a repetido mais de uma vez no lado direito da equa¸c˜ao. Para resolver este problema, lembre-se que a letra empregada para um ´ındice falso num termo n˜ ao afeta o resultado, ou seja, Vim cm = Vin cn . Logo, alterando o ´ındice falso de m para n em (A.14) e o ´ındice livre de i para m vem que bm = Vmn cn .

(A.15)

Como agora tem-se o mesmo ´ındice m nas express˜oes (A.14) e (A.15), efetua-se a substitui¸c˜ao ai = Uim bm = Uim Vmn cn .

(A.16)

Observe que (A.16) representa trˆes equa¸co˜es ao se variar o ´ındice livre i de 1 a 3. Por sua vez, cada equa¸c˜ao resulta numa soma de nove termos no lado direito, pois os ´ındices repetidos m e n variam cada um de 1 a 3. Logo  P3 P3 P3   a1 = Pm,n=1 U1m Vmn cn = Pm=1 Pn=1 U1m Vmn cn ai = Uim Vmn cn → a2 = 3m,n=1 U2m Vmn cn = 3m=1 3n=1 U2m Vmn cn .  P3 P3 P3 

a3 =

m,n=1 U3m Vmn cn

=

m=1

(A.17)

n=1 U3m Vmn cn

De forma geral, deve-se ter cuidado ao se fazer substitui¸co˜es convenientes, ou seja, n˜ao substituir ´ındices repetidos por livres, podendo dar origem a um somat´ orio inexistente na nota¸c˜ao indicial.

A.5. Opera¸ c˜ oes

A.5.2

A-9

Multiplica¸c˜ ao

Considere a multiplica¸c˜ao de p e q dados respectivamente por P

p = am bm = 3m=1 am bm = a1 b1 + a2 b2 + a3 b3 , P q = cm dm = 3m=1 cm dm = c1 d1 + c2 d2 + c3 d3 .

(A.18)

A partir da´ı, o produto pq ´e calculado como pq = (a1 b1 + a2 b2 + a3 b3 ) (c1 d1 + c2 d2 + c3 d3 ) , podendo ainda ser denotado em nota¸c˜ao indicial pq =

3 X

!

am bm


Similar Free PDFs