Resumen Resistencia de Materiales PDF

Title Resumen Resistencia de Materiales
Author Doménica Melo
Course Estática
Institution Universidad Técnica Particular de Loja
Pages 4
File Size 75.6 KB
File Type PDF
Total Downloads 88
Total Views 160

Summary

Resumen acerca de que es la Resistencia de Materiales y en que se compone...


Description

RESUMEN PRIMERA PARTE. La pregunta que se hará el estudiante es ¿cuál es la diferencia entre la Mecánica y Resistencia de Materiales? Al respecto diremos que la Mecánica, analiza las fuerzas exteriores que actúan sobre una estructura; y la considera a ésta como un cuerpo rígido; capaz de soportar todas estas cargas, sin deformarse. En cambio a la Resistencia de Materiales le interesa saber si la estructura tendrá la capacidad para soportar dichas cargas; teniendo que analizarse en este caso las fuerzas internas del cuerpo y su relación con las fuerzas exteriores que actúan en él. La Resistencia de Materiales estudia y establece las relaciones entre las cargas exteriores aplicadas y sus efectos en el interior de los sólidos. No supone que los sólidos son rígidos, como en la Mecánica; sino que las deformaciones por pequeñas que sean tienen gran interés en nuestro análisis. Otra pregunta que surge de la exposición es si una máquina o estructura soportan cargas, ¿qué es una carga y de que tipo son? A lo largo de la exposición iremos analizando los diferentes tipos de cargas que existen y sus efectos que ocasionan en las máquinas y edificios, pero a manera de introducción diremos que las cargas son fuerzas que actúan en un cuerpo y que cuando se les multiplica por su brazo de palanca se generan momentos. Toda máquina o edificio estará sometida a fuerzas y momentos, y de acuerdo a como actúen en los elementos de las máquinas o estructuras generarán los siguientes efectos: AXIALES,

CORTANTES, FLEXIONANTES y DE TORSIÓN. Los efectos axiales y de corte son generados por fuerzas, los flexionantes y de torsión son generados por pares. A continuación pasaremos a analizar los cuatro efectos que todo edifico o máquina tendrán, al ser sometidos a cargas o pares, según sea el caso. EFECTOS AXIALES Los efectos axiales aparecen cuando las fuerzas actúan en el centro de gravedad de la sección recta del elemento estructural y se desplazan a lo largo de su eje de simetría. Los efectos axiales pueden ser de tracción o de compresión. Los primeros generan alargamiento y los segundos acortamiento en los elementos. EFECTOS DE CORTE Los efectos de corte aparecen cuando las fuerzas actúan en la dirección de la sección recta del elemento. Son los componentes de la resistencia total al deslizamiento de la porción del elemento a un lado de la sección de exploración respecto de la otra porción. EFECTOS DE FLEXION Los efectos flexionantes aparecen cuando se aplican pares en el plano donde se encuentra el eje de simetría del elemento estructural. Dichos pares tratarán de curvar o flexar el elemento en el plano donde están actuando los pares. Este efecto genera tensiones normales de tracción y de compresión en las fibras que se encuentran a un lado y otro del eje neutro del elemento, asimismo también se generan tensiones de corte debido a la flexión.

ESFUERZO Concepto Fundamental Sabemos que la mecánica estudia las fuerzas sin considerar los efectos que generan en el elemento en el que actúan. Si queremos saber la magnitud de una fuerza, tendremos que tener en consideración el área en la que actúa. Es decir, si tenemos una fuerza de 1000 kgs. y actúa sobre un área de 100 cm2 diremos que la fuerza de 1000 kg tiene una intensidad de 10 kg/cm2; si el área hubiera sido de 10 cm2 la magnitud de la fuerza será de 100 kg/cm2. CONCEPTOS Y DEFINICIONES 1. Masa. – Es la resistencia que ofrecen los cuerpos a la traslación. 2. Momento de inercia. – Es la resistencia que ofrece los cuerpos a la rotación. 3.

Tensión Cortante. – Se produce por fuerzas que actúan paralelamente al plano que los soporta.

4. Tracción y Compresión. – Son fuerzas que actúan perpendicularmente o normales al plano sobre el que actúan. Por esta razón a las tensiones de tracción y compresión se llaman también tensiones normales, mientras que a la tensión cortante se denomina tensión tangencial. 5. Deformación Tangencial. – Es generada por las fuerzas cortantes. La fuerza cortante no varía la

longitud de sus lados, manifestándose sólo un cambio de forma; de rectángulo a paralelogramo por ejemplo. 6. Materiales Dúctiles. – Pueden desarrollar grandes deformaciones sin llegar a la rotura. Presentan fenómeno de estricción y escalón de fluencia. Ejemplo: Acero con bajo contenido de carbono, cobre, aluminio, latón, etc. 7. Materiales Frágiles. – Llegan a la rotura de forma abrupta, no aceptan grandes deformaciones. Ejemplos: Piedra, Concreto, Vidrio, ladrillo, etc. 8. Homogeneidad, Continuidad, Isotropía. – Continuidad supone que el material no contiene vacíos interiores, Homogeneidad supone que sus propiedades son iguales en cualquier punto. Isotropía, sus propiedades son iguales en cualquier dirección. Ejemplo: Acero es isotrópico, Madera es anisotrópico....


Similar Free PDFs