Sistema mecánico del microscopio PDF

Title Sistema mecánico del microscopio
Author Abigail Zuñiga
Course Química
Institution Universidad Autónoma de Querétaro
Pages 10
File Size 527.9 KB
File Type PDF
Total Downloads 19
Total Views 180

Summary

Download Sistema mecánico del microscopio PDF


Description

Sistema mecánico del microscopio La parte mecánica del microscopio también se denomina montura. Toda montura, por complicada que sea posee los siguientes elementos: pie o base, mecanismo de enfoque, la platina, el revólver y el tubo del ocular. 4.3.1- Pie o base Generalmente en herradura o en Y, aunque también puede ser rectangular, con un peso considerable que garantiza la estabilidad del instrumento. La base aloja la fuente de iluminación y puede contener un mecanismo para regular la intensidad luminosa. Sirve de soporte a una columna o brazo sobre el cual reposa el resto del aparato. La columna puede ser inclinada; en su parte más inferior se dispone el condensador y la parte superior posee una cremallera que permite desplazar en sentido vertical el condensador, la platina o el revólver y el tubo. Las ventajas que procura el microscopio inclinado son múltiples y la posición es más confortable para el observador (actividad que es muy incómoda cuando el tubo del microscopio es vertical). 4.3.2.-Mecanismo de enfoque Se logra desplazando en sentido vertical ya sea la platina donde se coloca el espécimen o ya sea el revólver donde están colocados los objetivos, de modo que se pueda centrar el punto focal del objetivo que se está utilizando es ese momento. Se logra mediante dos mecanismos, primero uno rápido del tornillo macrométrico y segundo, otro lento del tornillo micrométrico. La cremallera que permite el movimiento rápido del tornillo macrométrico posee dientes que se engranan y producen un movimiento tosco para lograr un enfoque aproximado. Se utiliza para enfocar con los objetivos de poco aumento y para subirlos rápidamente con la finalidad de colocar o retirar de la platina el preparado histológico. El tornillo micrométrico por el contrario posee una graduación tal que cada división de la rosca permite un movimiento vertical imperceptible en el orden de 0,001 mm. Esta disposición permite evaluar de manera aproximada el espesor de los objetos, considerando el número de vueltas que realiza el tornillo al enfocar su parte más superficial y luego la más profunda. 4.3.3.-La platina Es el soporte horizontal donde se colocan las preparaciones histológicas. Presenta en el centro un orificio circular por donde pasa el rayo de luz producido por la fuente

luminosa y proveniente del condensador. Generalmente es de forma cuadrada y posee un sistema de fijación e inmovilización de la lámina porta-objeto compuesto por pinzas o una pieza articulada que esta fija a otro dispositivo, el carro. Este dispositivo permite el examen metódico y completo de la preparación al proporcionar un desplazamiento hacia adelante o hacia atrás y de derecha a izquierda y viceversa. Otra pieza, el vernier (denominado así gracias al nombre de su inventor en 1631), también llamado nonius, consiste en dos pequeñas reglas graduadas en milímetros cuya finalidad es la de obtener coordenadas aproximadas que sirven de referencia para localizar una estructura determinada en la preparación. En la práctica, el uso del vernier no es frecuente, se hace un poco complicado anotar las cifras y más difícil aún colocarlas en las reglas y localizar la estructura en cuestión. Además, estas cifras solo son válidas para el microscopio en el cual se obtuvieron. Hay otros procedimientos más simples para tal fin (11, 64).

4.3.4.-El revólver Permite el intercambio rápido de objetivos mediante un movimiento de rotación. El revólver está constituido por una semi-esfera que posee una serie de anillos en los cuales van atornillados los objetivos. Esta pieza gira alrededor de un eje que está colocado en la parte inferior del tubo. Puede ser de diversas formas y de igual manera, alojar un número variable de objetivos (dos, tres, cuatro o más).

4.3.5.-El tubo Soporta la porción óptica del microscopio. Es un cilindro hueco de longitud variable, cuyo interior está pintado de negro mate y posee un diafragma para impedir la formación de reflejos y facilitar la observación. El tubo puede ser doble y alojar dos lentes oculares (microscopio binocular). Sistema de iluminación El sistema de iluminación está constituido por las partes del microscopio que producen o captan, reflejan y regulan la intensidad de la luz que se utiliza para la observación microscópica. Si la muestra es iluminada de manera inadecuada, la calidad de la imagen que se obtiene se verá afectada . La iluminación óptima debe ser brillante, sin resplandores y en lo posible debe dispersarse de manera uniforme en el campo de observación.

El sistema de iluminación está constituido por la fuente de luz, el condensador y un diafragma o iris. Está colocado debajo de la platina y la finalidad es de iluminar mediante luz transmitida. La fuente de luz emite una radiación que es recogida por un dispositivo denominado condensador, que a su vez forma un cono luminoso necesario para la visualización con objetivos de mayor aumento.

4.5.1.-Fuentes de luz • Bombillas de tungsteno y halógenas: La mayoría de microscopios de luz están dotados de lámparas de este tipo cuyo poder oscila entre 10W y 100W. • Lámparas de arco eléctrico: Son lámparas que pueden contener gases (vapor de mercurio, xenón o circonio) y son empleadas para proveer una luz monocromática con filtros apropiados, ideal para microfotografía en blanco y negro o a colores. También se utilizan en microscopios especiales (fluorescencia). • Láser: dispositivo que genera un haz de luz con características de tamaño, coherencia, forma y pureza controladas. • LED: dispositivo emisor de luz con características muy próximas a la luz monocromática (espectro reducido). La luz se produce cuando una corriente eléctrica pasa a través del material semiconductor (arseniuro de galio-aluminio) del que están hechos 4.5.2.-Condensador Es un dispositivo que tiene por finalidad formar conos luminosos grandes, con aperturas mayores, necesarios para ver con los objetivos de mayor aumento. El condensador está conformado por una o varias lentes situadas debajo de la platina del microscopio, colocadas entre la fuente de luz y el espécimen. Tipos de condensadores • Condensador de Abbe: Es el más simple, sin corrección de aberraciones y el más económico. Compuesto de dos o más lentes. Puede llegar a tener una apertura numérica de 1.4 en modelos de tres lentes. Se emplea para observación de rutina y con objetivos de modesta apertura numérica y amplificación. Una de las ventajas es el amplio cono de iluminación que puede producir. • Aplanático: Corrige aberraciones de esfericidad.

•Acromático: Corrige aberraciones cromáticas. Contiene tres o cuatro lentes corregidas para el azul y el rojo. Este condensador es útil para observaciones de rutina con objetivos secos y para microfotografía (blanco y negro o color). •Aplanático-Acromático: Poseen el más alto nivel de corrección y es el condensador de elección para microfotografía a color con luz blanca. Puede contener ocho lentes y su uso es óptimo con inmersión y objetivos de mayor aumento.

El cono de luz que produce el condensador debe ajustarse de manera apropiada para optimizar la intensidad y el ángulo de apertura. Cada vez que se cambia un objetivo se debe realizar un ajuste para obtener el cono de luz conveniente a la apertura numérica del nuevo objetivo. A menudo no es práctico utilizar el mismo condensador para un amplio rango de objetivos (2x hasta 100x). Para objetivos de bajo poder de aumento (menor a 10x) algunos condensadores poseen una lente frontal adicional que es abatible. La altura del condensador es regulada mediante un mecanismo activado con un tornillo que lo baja o lo sube, acercándolo o no a la platina donde está colocado el espécimen (fig. 4-10). condensadores incremento del contraste entre los detalles de la estructura del espécimen. Se han desarrollado condensadores especiales para microscopía de campo oscuro, contraste de fase, luz polarizada, contraste de interferencia diferencial.

4.5.3.-Diafragma o iris Es un dispositivo que se coloca inmediatamente debajo de la platina. Debe permitir cambios en la apertura y con diámetros variables cuya finalidad es la de obtener conos luminosos cada vez más estrechos y eliminar los rayos de luz sobrantes. La apertura del diafragma se regula en relación con el tipo de objetivo que se esté utilizando. El diafragma o iris está pintado de negro con la finalidad de eliminar los rayos de luz reflejada que pueden interferir con la iluminación del objeto.

El condensador se desplaza verticalmente hasta obtener una imagen nítida del diafragma de campo. La iluminación ideal se consigue cuándo el condensador se encuentra lo más cerca de la preparación. El diafragma de campo regula el diámetro de la apertura de la iluminación y al cerrarlo se incrementan los contrastes (15). Una vez ajustada la iluminación Köhler no se debe regular la intensidad de la luz o el brillo bajando el condensador o cerrando la apertura de diafragma-iris, por el contrario, se regula la intensidad de la lámpara mediante un ajuste de voltaje.

Sistema óptico del microscopio

Los microscopios modernos están diseñados para proporcionar imágenes aumentadas y nítidas de los especímenes que se observan. Los componentes ópticos están colocados en una base estable que permite un intercambio rápido y un alineamiento preciso. El sistema óptico está constituido por dos juegos de lentes: El objetivo y el ocular. Los objetivos función consiste en colectar la luz proveniente del espécimen y proyectar una imagen nítida, real, invertida y aumentada hacia el cuerpo del microscopio. Constituyen un sistema óptico formado por una o varias lentes, las cuales deben estar centradas y los ejes ópticos de cada una deben coincidir exactamente para formar el eje óptico del sistema. Sus lentes están hechas a partir de cristales (espatos, fluorita, entre otros) con un alto grado de calidad y funcionamiento; Clasificación: Tomando en cuenta el grado de corrección de las aberraciones hay dos categorías de objetivos para el microscopio, los objetivos acromáticos y los objetivos apocromáticos. En cada categoría se distinguen aún dos grupos, los objetivos secos y los objetivos de inmersión: • Objetivos acromáticos: Presentan corrección cromática para la luz azul y roja. Corrección de esfericidad para el verde. Dan mejores resultados con filtro de luz de color verde y son ideales para microfotografía blanco y negro. Se asume que un objetivo es acromático cuando no posee ninguna denominación. • Objetivos semi-apocromáticos: Elaborados a partir de cristales de fluorita. Corrigen para el azul, el rojo y en cierto grado para el verde. La corrección de esfericidad es para dos colores, el verde y el azul. Dan buenos resultados con luz blanca y están mejor diseñados para la microfotografía en colores. • Objetivos apocromáticos: Poseen el más alto nivel de corrección de aberraciones. Presentan corrección cromática para cuatro colores (azul oscuro, azul, rojo y verde); corrección de esfericidad para dos o tres colores. Son los mejores objetivos para microfotografía y video a color. Debido a su alto grado de corrección, estos objetivos poseen mayores aperturas numéricas que los acromáticos y las fluoritas. Esto puede ser un inconveniente puesto que el campo de observación se presenta un poco curvo. Objetivos secos y objetivos de inmersión: En los objetivos secos el medio interpuesto es el aire cuyo índice de refracción es muy diferente del índice del vidrio porta y cubre-objeto. Por el contrario, en los objetivos denominados de inmersión el medio que separa al cubre-objeto de la lente frontal del objetivo es un líquido cuyo índice de refracción es lo más próximo al del vidrio. Este líquido puede ser agua destilada (n=1,33) o mejor aún aceite de cedro, que posee un índice de refracción (n=1,515) casi idéntico al del vidrio.

La ventaja de los objetivos de inmersión consiste en la disminución o eliminación de la refracción de los rayos luminosos entre el aire y el objetivo, en consecuencia, la luminosidad de la imagen está aumentada, mientras que en los objetivos secos, está disminuida. El empleo de la inmersión aumenta el ángulo de apertura del objetivo y permite mayor resolución gracias a la captura de una mayor cantidad de rayos luminosos refractados y solo puede utilizarse con objetivos de mayor aumento. Estructura de los objetivos: Generalmente es un tubo cilíndrico que contiene en su interior un revestimiento antireflejos y las diversas lentes colocadas en serie y alineadas (fig. 4-5). En la parte externa posee grabadas las especificaciones y características.

Figura 4-5.-Tipos de objetivos. (a) Objetivo acromático que contiene una lente frontal y dos pares internos, (b) objetivo semi-apocromático o fluorita, con cuatro pares de lentes y (c) objetivo apocromático que contiene un triplete, dos pares, un menisco y una lente esférica frontal.

Código de color Medio de inmersión de inmersión Negro Aceite Naranja

Glicerol

Blanco

Agua

Rojo

Especial o multiuso

Código de color Aumento de aumento Negro

1x, 2.5x

Marrón

2x, 2.5x

Rojo

4x, 5x

Amarillo

10x

Verde

16x, 20x

Azul turquesa

25x, 32x

Azul celeste

40x, 50x

Azul cobalto

60x, 63x

Blanco, crema

100x, 250x, 200x

4.4.2.-El ocular El ocular (del latín oculus = el ojo) está formado por lentes que generalmente son separadas por un diafragma, montadas en las extremidades de un cilindro que va introducido en la parte superior del tubo. El ocular sirve para observar la imagen real e invertida que produce el objetivo, ejerciendo dos funciones: • Aumenta la imagen y la transforma en una imagen virtual, derecha con respecto a la imagen del objetivo, pero aun invertida, con respecto al objeto. Posteriormente el ojo endereza la imagen. • Aplana y aclara el campo óptico o plano circular en el que aparece el objeto.

La lente superior se denomina lente ocular y es la que produce el aumento de la imagen real del objetivo; la lente inferior también se denomina colectora y es la que aplana y aclara el campo

Los modelos de microscopios más simples poseen un solo ocular (mono-oculares), sin embargo hay microscopios binoculares y algunos modelos más modernos son trinoculares, especiales para la microfotografía. Los binoculares tienen los objetivos dispuestos con una inclinación de 45º para realizar la observación cómodamente.

Campo

del

microscopio:

Se denomina campo del microscopio al círculo visible que se observa en el ocular. También podemos definirlo como la porción del plano visible observado a través de las lentes. Si el aumento es mayor, el campo disminuye, lo cual quiere decir que el campo es inversamente proporcional al aumento del microscopio. La forma del campo está determinada por el diafragma fijo del ocular, que generalmente es de forma circular, no obstante el campo puede ser cuadrado y esta forma es muy útil al realizar estudios de coprología o hematología, en donde se requiere reconstruir la totalidad del campo de observación de la preparación, lo cual se dificulta con un campo circular clásico al quedar zonas superpuestas (11). El ocular produce un aumento adicional a la imagen proporcionada por el objetivo. El valor de este aumento está inscrito en la superficie del ocular y generalmente es de 10x, 12.5x, 15x, 20x o 25x. Otro valor es el número de campo que consiste en el diámetro en milímetros de la apertura fija del diafragma, la cual puede variar desde 18mm hasta 26.5mm. Otra de las aplicaciones del ocular consiste en la cuantificación o medición de estructuras del espécimen en estudio. En ciertos casos es relevante conocer el número, tamaño o dimensiones de las células y demás elementos del tejido. Usualmente se coloca en el plano de la apertura fija del diafragma una pieza circular de vidrio con una escala o gradilla (fig. 4-9), la cual aparece enfocada y superpuesta a la imagen del espécimen al encontrarse en el plano de formación de la misma.

Los oculares para la medición poseen un mecanismo de enfoque mediante rotación. Se debe calibrar la escala de medición del ocular con cada objetivo que se use (15). En la actualidad se puede emplear algún software de computación para realizar mediciones sobre las imágenes digitales y obtener datos muy precisos, no obstante, el método más económico y de uso más generalizado es la medición con los oculares. En ocasiones se coloca en el diafragma del ocular una estructura filamentosa (alambre, pestaña, cerda) denominada señalador, con la finalidad de indicar de manera específica alguna estructura en particular en el campo de observación. El señalador se aprecia como una línea oscura que parte del borde del campo hacia el centro del mismo. Muchos oculares modernos poseen una copa de goma cuya finalidad es, por una parte colocar los ojos a la distancia correcta de observación y por otra, impedir la formación de reflejos luminosos que dificulten la visualización. Algunos microscopios binoculares poseen un mecanismo de enfoque del ocular que ajusta las dioptrías en caso que el observador posea una disminución de su agudeza visual. El ajuste se realiza por separado tanto para el ojo derecho como para el izquierdo; de igual manera se ajustan a la distancia interpupilar del observador (usualmente entre 55 y 75 mm).

Figura 4-9.-Microfotografía de un frotis de sangre periférica en la que se observa un campo rectangular con una escala de divisiones precisas, que en este caso son en el orden de 1/10 mm. Para determinar el tamaño de una célula se cuenta el número de divisiones que ocupa y la cifra se divide entre el aumento del objetivo empleado, dando como resultado un valor que corresponde al tamaño de la misma. Si la célula mide 7 divisiones, corresponde a 7/10mm; si el aumento del objetivo es 100x, se divide 0.7mm:100 = 0.007mm = 7µm....


Similar Free PDFs