Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 03 PDF

Title Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 03
Course Mechatronics Engineering
Institution Trường Đại học Bách khoa Hà Nội
Pages 180
File Size 9.5 MB
File Type PDF
Total Downloads 27
Total Views 148

Summary

Download Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 03 PDF


Description

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 1.

Resolve 90 N force into vector components P and Q where Q = ( 90 N ) sin 40° = 57.851 N Then M B = − rA/BQ

= − (0.225 m )(57.851 N ) = − 13.0165 N ⋅ m M B = 13.02 N ⋅ m

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 2.

Fx = ( 90 N ) cos 25 °

= 81.568 N Fy = ( 90 N ) sin 25 ° = 38.036 N x = ( 0.225 m) cos 65° = 0.095089 m

y = (0.225 m )sin 65° = 0.20392 m

M B = xFy − yFx = (0.095089 m )( 38.036 N ) − ( 0.20392 m ) (81.568 N ) = − 13.0165 N ⋅ m

M B = 13.02 N ⋅m

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 3.

Px = ( 3 lb ) sin 30° = 1.5 lb

Py = ( 3 lb ) cos30 ° = 2.5981 lb

M A = xB/ A Py + yB/ A Px = ( 3.4 in.)( 2.5981 lb) + ( 4.8 in.) ( 1.5 lb) = 16.0335 lb ⋅in.

M A = 16.03 lb⋅ in.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 4.

For P to be a minimum, it must be perpendicular to the line joining points A and B with rAB =

( 3.4 in.)2 + ( 4.8 in.)2

= 5.8822 in.  y x 

α = θ = tan −1  

 4.8 in.  = tan−1    3.4 in. 

= 54.689° Then

M A = rAB Pmin

or

Pmin =

M A 19.5 lb⋅ in. = 5.8822 in. rAB

= 3.3151 lb ∴ Pmin = 3.32 lb

54.7° or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Pmin = 3.32 lb

35.3° 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 5.

M A = rB /A P sin θ

By definition where

θ = φ + ( 90° − α )

and

φ = tan −1 

 4.8 in.    3.4 in.

= 54.689° Also

rB/ A =

(3.4 in. )2 + (4.8 in.)2

= 5.8822 in.

Then

(17 lb ⋅in.) = ( 5.8822 in. )( 2.9 lb ) sin( 54.689° + 90° − α )

or

sin ( 144.689° − α ) = 0.99658

or

144.689° − α = 85.260°; 94.740° ∴ α = 49.9°, 59.4° 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 6.

(a)

(a) M A = rB/ A × TBF

M A = xT BFy + yT BFx = ( 2 m )( 200 N )sin 60 ° + (0.4 m )( 200 N ) cos 60 ° = 386.41 N ⋅ m or M A = 386 N ⋅ m (b)



(b) For FC to be a minimum, it must be perpendicular to the line joining A and C.

∴ M A = d ( FC ) min d =

with

( 2 m) 2 + ( 1.35 m) 2

= 2.4130 m Then 386.41 N ⋅m = (2.4130 m )( FC )min

( FC )min and

= 160.137 N  1.35 m   = 34.019°  2m 

φ = tan −1 

θ = 90 − φ = 90° − 34.019° = 55.981° ∴ (FC )min = 160.1 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

56.0° 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 7.

(a)

M A = xTBF + yTBF y x

= ( 2 m )( 200 N ) sin 60° + (0.4 m )( 200 N ) cos 60° = 386.41 N ⋅ m ⊳

or M A = 386 N ⋅m

(b)

Have or

M A = xF C

FC =

M A 386.41 N ⋅ m = 2m x

= 193.205 N ⊳

∴ FC = 193.2 N

(c)

For FB to be minimum, it must be perpendicular to the line joining A and B

∴ M A = d ( FB )min with Then

d =

= 2.0396 m

386.41 N ⋅m = (2.0396 m ) ( FC )min

( FC ) min and

( 2 m )2 + (0.40 m )2

= 189.454 N

 2m   = 78.690°  0.4 m 

θ = tan−1 

or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

( FC ) min

= 189.5 N

78.7° ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 8.

(a)

(

)

M B = rA/B cos15° W

= (14 in.)( cos15° )(5 lb ) = 67.615 lb ⋅in. or

M B = 67.6 lb⋅ in.



(b)

M B = rD/ B P sin 85 ° 67.615 lb ⋅in. = (3.2 in. ) P sin 85° or

(c)

P = 21.2 lb ⊳

For ( F) min , F must be perpendicular to BC. Then,

M B = rC/B F 67.615 lb ⋅in. = (18 in. ) F or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

F = 3.76 lb

75.0 ° ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 9.

Slope of line EC =

(a)

Then

and Then

TABx =

35 in. 5 = 76 in. + 8 in. 12

12 (T ) 13 AB

=

12 ( 260 lb ) = 240 lb 13

TABy =

5 ( 260 lb ) = 100 lb 13

M D = TABx (35 in. ) − TABy (8 in. )

= (240 lb )(35 in. ) − (100 lb )(8 in. ) = 7600 lb ⋅in. or M D = 7600 lb ⋅in. (b) Have



M D = T ABx ( y ) + T ABy (x ) = ( 240 lb )( 0) + (100 lb)( 76 in.) = 7600 lb ⋅in. or M D = 7600 lb ⋅in.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 10.

Slope of line EC =

35 in. 7 = 112 in. + 8 in. 24

Then

TABx =

24 T AB 25

and

TABy =

7 T 25 AB

M D = TABx ( y) + T ABy ( x )

Have

∴ 7840 lb ⋅in. =

24 7 TAB ( 0 ) + TAB (112 in. ) 25 25 TAB = 250 lb or T AB = 250 lb ⊳

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 11.

The minimum value of d can be found based on the equation relating the moment of the forceT

ABabout

D:

M D = ( TAB max ) y ( d ) M D = 1152 N ⋅ m

where

( TAB max ) y Now

sin θ =

= TAB max sinθ = ( 2880 N ) sinθ

1.05 m

( d + 0.24) 2 + (1.05) 2 m

 ∴ 1152 N ⋅m = 2880 N   

1.05

( d + 0.24) 2

  (d ) 2  + (1.05) 

( d + 0.24)2 + ( 1.05)2

or or

(d

or

= 2.625d

+ 0.24 ) + (1.05 ) = 6.8906d2 2

2

2

5.8906 d − 0.48d − 1.1601 = 0

Using the quadratic equation, the minimum values of d are 0.48639 m and −0.40490 m. Since only the positive value applies here, d = 0.48639 m or d = 486 mm 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 12.

with d AB =

( 42 mm )2 + (144 mm )2

= 150 mm sinθ =

42 mm 150 mm

cos θ =

144 mm 150 mm

and FAB = − FAB sin θ i − FAB cosθ j =

2.5 kN ( − 42 mm) i − ( 144 mm) j  150 mm 

= − ( 700 N ) i − (2400 N) j Also rB/ C = − (0.042 m ) i + ( 0.056 m ) j Now MC = rB/C × FAB = ( −0.042 i + 0.056 j) × (− 700 i − 2400 j) N ⋅m = (140.0 N ⋅ m ) k or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

MC = 140.0 N⋅ m



COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 13.

( 42 mm )2 + (144 mm )2

with d AB =

= 150 mm sinθ =

42 mm 150 mm

cosθ =

144 mm 150 mm

FAB = − FAB sin θi − FAB cosθ j =

2.5 kN ( − 42 mm) i − ( 144 mm) j  150 mm 

= − ( 700 N ) i − (2400 N) j Also rB/ C = − (0.042 m ) i − ( 0.056 m ) j Now MC = rB/C × FAB = ( −0.042 i − 0.056 j ) × ( −700 i − 2400 j) N ⋅m = ( 61.6 N ⋅ m) k or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

MC = 61.6 N ⋅ m



COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 14.

ΣM D :

 88 80 N   105  M D = ( 0.090 m )  ×  − ( 0.280 m )  137 × 80 N  137     = −12.5431 N ⋅ m or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

M D = 12.54 N ⋅ m



COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 15.

Note: B = B ( cos β i + sin β j )

B′ = B ( cos β i − sin β j ) C = C ( cosα i + sinα j ) By definition:

B × C = BC sin (α − β )

(1)

B′ × C = BC sin (α + β )

(2)

Now ... B × C = B ( cos β i + sin β j ) × C (cos α i + sin α j ) = BC ( cos β sin α − sin β cos α ) k and

(3)

B′ × C = B ( cos β i − sin β j) × C (cos α i + sin α j) = BC( cos β sinα + sin β cosα )k

(4)

Equating the magnitudes of B × C from equations (1) and (3) yields: BC sin ( α − β ) = BC ( cos β sin α − sin β cosα )

(5)

Similarly, equating the magnitudes of B′ × C from equations (2) and (4) yields: BC sin ( α + β ) = BC ( cos β sin α + sin β cosα )

(6)

Adding equations (5) and (6) gives: sin (α − β ) + sin ( α + β ) = 2cos β sinα or

sin α cos β =

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

1 1 sin ( α + β ) + sin ( α − β )  2 2

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 16.

Have d = λ AB × rO/ A where λ AB =

rB/ A rB/A

and rB/ A = ( −210 mm − 630 mm) i + ( 270 mm − ( −225 mm)) j

= − (840 mm )i + (495 mm ) j rB /A =

( − 840 mm)

2

+ ( 495 mm)

2

= 975 mm − (840 mm )i + (495 mm )j

Then λAB =

975 mm

=

1 ( −56i + 33j) 65

Also rO /A = ( 0 − 630) i + ( 0 − (− 225)) j

= − ( 630 mm ) i + ( 225 mm ) j

∴d =

1 (− 56i + 33j ) × − ( 630 mm ) i + ( 225 mm ) j 65

= 126.0 mm d = 126.0 mm 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 17.

(a) where

λ =

A×B A ×B

A = 12i − 6 j + 9k B = − 3i + 9 j − 7.5k

Then i

j

k

A × B = 12 − 6 −3 9

9 − 7.5

= ( 45 − 81) i + ( −27 + 90 ) j + (108 − 18 )k = 9 (− 4i + 7 j + 10 k ) And A × B = 9 (− 4) 2 + (7) 2 + (10) 2 = 9 165

∴λ =

9 ( − 4i + 7j + 10k ) 9 165 or λ =

(b) where

λ =

A×B A ×B

A = −14i − 2j + 8k B = 3i + 1.5 j − k

Then

j k i A × B = −14 − 2 8 1.5 −1

3

= ( 2 − 12 ) i + ( 24 − 14 ) j + ( −21 + 6 ) k = 5 (−2i + 2 j − 3k ) and

A × B = 5 (−2) 2 + (2)2 + (−3) 2 = 5 17

∴λ =

5( − 2 i + 2 j − 3k) 5 17

or λλ =

1 17

( − 2i + 2j − 3k ) ⊳

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

1 165

( − 4i + 7j + 10k ) ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 18.

(a )

Have A = P × Q i

j k P × Q = 3 7 − 2 in.2 −5 1 3 = [ (21 + 2)i + (10 − 9) j + (3 + 35)k ]in.2

(

) (

) (

)

= 23 in.2 i + 1 in.2 j + 38 in.2 k ∴ A = (23) 2 + (1) 2 + (38) 2 = 44.430 in.2 or A = 44.4 in.2  (b )

A = P×Q i

j k P × Q = 2 − 4 3 in. 2 6 −1 5 = [ ( −20 − 3)i + (−18 − 10) j + (−2 + 24)k ] in.2

(

) (

) (

)

= − 23 in.2 i − 28 in.2 j + 22 in.2 k ∴ A = ( − 23) 2 + (−28) 2 + (22) 2 = 42.391 in.2 or A = 42.4 in.2 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 19.

(a )

Have

MO = r × F

i j k = − 6 3 1.5 N ⋅ m 7.5 3 − 4.5 = [ ( −13.5 − 4.5)i + (11.25 − 27) j + (−18 − 22.5)k] N ⋅ m = ( −18.00i − 15.75 j − 40.5k ) N ⋅ m or MO = − (18.00 N⋅ m )i − (15.75 Ν ⋅ m) j − ( 40.5 N⋅ m) k  (b)

Have

MO = r × F i = 2 7.5

j − 0.75 3

k −1 N ⋅ m − 4.5

= [ (3.375 + 3)i + (−7.5 + 9) j + (6 + 5.625)k] N ⋅ m = ( 6.375i + 1.500 j + 11.625k ) N ⋅ m or MO = ( 6.38 N ⋅ m) i + (1.500 Ν ⋅ m) j + (11.63 Ν ⋅ m) k  (c)

Have

MO = r × F i j k = − 2.5 − 1 1.5 N ⋅ m 7.5

3 4.5

= [ (4.5 − 4.5)i + (11.25 − 11.25) j + (−7.5 + 7.5)k] N ⋅ m or M O = 0  This answer is expected since r and F are proportional ( F = −3r) . Therefore, vector F has a line of action passing through the origin at O.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 20.

(a)

Have

MO = r × F i j = −7.5 3

k −6 lb ⋅ft

−6

3

4

= [ (12 − 36)i + (−18 + 30) j + (45 − 9)k ] lb ⋅ ft or MO = − ( 24.0 lb⋅ ft) i + (12.00 lb⋅ ft) j + (36.0 lb⋅ ft) k  (b)

Have

MO = r × F i j k = −7.5 1.5 −1 lb ⋅ft −6 4

3

= [ (6 − 6)i + (−3 + 3) j + (4.5 − 4.5) k] lb ⋅ ft or M O = 0  (c)

Have

MO = r × F i j = −8 2 3

−6

k −14 lb ⋅ft 4

= [ (8 − 84)i + (−42 + 32) j + (48 − 6)k] lb ⋅ ft or M O = − ( 76.0 lb ⋅ ft ) i − (10.00 lb⋅ ft ) j + ( 42.0 lb⋅ ft ) k 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 21.

With

TAB = − ( 369 N) j TAB = TAD

JJJG AD = ( 369 N ) AD

( 2.4 m) i − ( 3.1 m) j − ( 1.2 m) k ( 2.4 m)2 + (− 3.1 m)2 + (− 1.2 m)2

TAD = ( 216 N ) i − ( 279 N ) j − (108 N ) k Then

R A = 2 TAB + TAD = ( 216 N )i − (1017 N ) j − (108 N) k

Also

rA /C = (3.1 m )i + (1.2 m )k

Have

M C = r A/C × R A

=

i 0

j 3.1

k 1.2 N ⋅ m

216 − 1017 − 108

= ( 885.6 N ⋅m ) i + ( 259.2 N ⋅m ) j − ( 669.6 N ⋅ m) k MC = (886 N ⋅m ) i + (259 N ⋅m ) j − (670 N ⋅m ) k 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 22.

Have

M A = rC / A × F

where

rC/ A = ( 215 mm )i − (50 mm )j + (140 mm )k Fx = −( 36 N ) cos 45° sin12°

Fy = −( 36 N ) sin 45° Fz = −( 36 N ) cos 45 °cos12 °

∴ F = −( 5.2926 N) i − ( 25.456 N) j − ( 24.900 N) k and

MA =

i 0.215

j − 0.050

k 0.140

N⋅ m

−5.2926 − 25.456 − 24.900 = ( 4.8088 N ⋅ m ) i + ( 4.6125 N ⋅ m) j − (5.7377 N ⋅ m ) k M A = ( 4.81 N ⋅ m )i + (4.61 N ⋅ m ) j − (5.74 N ⋅ m ) k 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 3, Solution 23.

Have

M O = r A/O × R

where

rA/ D = ( 30 ft ) j + (3 ft ) k T1 = −( 62 lb) cos10 ° i −  (62 lb ) sin10 ° j


Similar Free PDFs