Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 11 PDF

Title Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 11
Course Mechatronics Engineering
Institution Trường Đại học Bách khoa Hà Nội
Pages 180
File Size 13.6 MB
File Type PDF
Total Downloads 86
Total Views 414

Summary

COSMOS: Complete Online Solutions Manual Organization System Chapter 11, Solution 2. 2 x t3 (t 2) m (a) dx 3t 2 2 ( t 2 ) dt dv 6t 2 2 dt Time at a 0. 0 6t0 2 0 t0 (b) 1 3 t0 s W Corresponding position and velocity. 3 2 x 2 2 m x 2 m W 2 v 3 2 2 Vector Mechanics for Engineers: Statics and Dynamics, ...


Description

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 2. 2

x = t3 − ( t − 2) m

(a)

v=

dx = 3t 2 − 2 ( t − 2) m/s dt

a=

dv = 6t − 2 m/s 2 dt

Time at a = 0. 0 = 6t0 − 2 = 0 t0 =

(b)

1 3

t0 = 0.333 s W

Corresponding position and velocity. 3

2

⎛1 ⎞ ⎛1 ⎞ x = ⎜ ⎟ − ⎜ − 2⎟ = − 2.741 m ⎝3⎠ ⎝3 ⎠

x = − 2.74 m W

2

⎛1 ⎞ ⎛1 ⎞ v = 3 ⎜ ⎟ − 2 ⎜ − 2 ⎟ = 3.666 m/s ⎝3 ⎠ ⎝3 ⎠

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

v = 3.67 m/s W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 3. Position:

x = 5t 4 − 4t 3 + 3t − 2 ft

Velocity:

v =

dx = 20t 3 − 12t 2 + 3 ft/s dt

Acceleration:

a=

dv = 60t 2 − 24t ft/s2 dt

When t = 2 s, 4

3

x = ( 5)( 2 ) − ( 4 )( 2 ) − ( 3 )( 2 ) − 2 3

x = 52 ft W

2

v = 115 ft/s W

a = ( 60 )( 2 ) − ( 24 )( 2 )

a = 192 ft/s2 W

v = ( 20 )( 2 ) − (12 )( 2 ) + 3 2

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 4. Position:

x = 6t 4 + 8 t 3 − 14t 2 − 10 t + 16 in.

Velocity:

v=

dx = 24t 3 + 24 t 2 − 28t − 10 in./s dt

Acceleration:

a=

dv = 72 t 2+ 48 t − 28 in./s 2 dt

When t = 3 s, 4

3

2

x = ( 6 )( 3 ) + (8 )( 3 ) − (14 )(3 ) − (10 )(3 ) + 16 3

2

v = ( 24 )(3 ) + ( 24 )( 3 ) − ( 28 )( 3) − 10 2

a = ( 72 )( 3) + ( 48 )( 3) − 28

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

x = 562 in. ! v = 770 in./s ! a = 764 in./s 2 !

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 5. Position:

x = 500sin kt mm

Velocity:

v=

dx = 500k coskt mm/s dt

Acceleration:

a =

dv = − 500k 2sin kt mm /s 2 dt

When t = 0.05 s,

and

k = 10 rad/s kt = (10 )( 0.05 ) = 0.5 rad x = 500sin ( 0.5)

v = (500 )(10 )cos (0.5 ) 2

a = − (500 )(10 ) sin (0.5 )

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

x = 240 mm ! v = 4390 mm/s ! a = − 24.0 × 103 mm/s2 !

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 6.

(

)

Position:

x = 50sin k1t − k2t 2 mm

Where

k1 =1 rad/s

Let

θ = k1t − k2 t2 = t − 0.5 t2 rad dθ = (1− t ) rad/s dt x = 50sin θ mm

Position:

k2 = 0.5 rad/s2

and

d 2θ = − 1 rad/s2 dt 2

and

dx dθ = 50 cosθ mm/s dt dt dv a= dt

v=

Velocity:

Acceleration:

a = 50 cosθ

2

d 2θ

When v = 0,

⎛dθ ⎞ 2 − 50 sinθ ⎜ ⎟ mm/s 2 dt ⎝ dt ⎠ either cosθ = 0

dθ =1 − t = 0 dt Over 0 ≤ t ≤ 2 s, values of cosθ are:

t = 1s

or

t (s )

0

0.5

1.0

1.5

2.0

θ ( rad )

0

0.375

0.5

0.375

0

cosθ

1.0

0.931

0.878

0.981

1.0

No solutions cosθ = 0 in this range.

For t = 1 s,

2 θ = 1 − ( 0.5)(1) = 0.5 rad

x = 50sin ( 0.5 ) a = 50 cos (0.5 )( −1) − 50sin (0.5 )( 0 )

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

x = 24.0 mm W a = − 43.9 mm/s 2 W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 7. Given:

x = t 3 − 6t 2 + 9t + 5

Differentiate twice.

v =

dx = 3t 2− 12t + 9 dt

a =

dv = 6t − 12 dt

(a)

v=0

When velocity is zero.

3t2 − 12t + 9 = 3 ( t − 1 )( t − 3 ) = 0 t = 1 s and t = 3 s W (b)

Position at t = 5 s. 3

2

x5 = ( 5) − ( 6)( 5) + ( 9 )( 5) + 5

x5 = 25 ft W

Acceleration at t = 5 s. a5 = 18 ft/s 2 W

a5 = (6 )(5 ) − 12 Position at t = 0. x0 = 5 ft Over 0 ≤ t < 1 s

x is increasing.

Over 1 s < t < 3 s

x is decreasing.

Over 3 s < t ≤ 5 s

x is increasing.

Position at t = 1 s. 3

2

x1 = (1) − ( 6 )(1) + ( 9 )(1) + 5 = 9 ft

Position at t = 3 s. 3

2

x3 = ( 3) − ( 6)( 3) + ( 9 )( 3) + 5 = 5 ft

Distance traveled. At t = 1 s

d1 = x1 − x0 = 9 − 5 = 4 ft

At t = 3 s

d 3 = d 1 + x3 − x1 = 4 + 5 − 9 = 8 ft

At t = 5 s

d5 = d3 + x5 − x3 = 8 + 25 − 5 = 28 ft d5 = 28 ft W

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 8. 3

x = t 2 − ( t − 2 ) ft

v= (a)

dx 2 = 2t − 3( t − 2 ) ft/s dt

Positions at v = 0. 2

2t − 3( t − 2) = − 3t 2 + 14t − 12 = 0

t=

−14 ± (14) 2 − (4)( − 3)( −12) (2)(− 3)

t1 = 1.1315 s and t 2 = 3.535 s

(b)

At t1 = 1.1315 s,

x1 = 1.935 ft

x1 = 1.935 ft W

At t 2 = 3.535 s,

x2 = 8.879 ft

x2 = 8.879 ft W

Total distance traveled. At t = t0 = 0,

x0 = 8 ft

At t = t4 = 4 s,

x4 = 8 ft

Distances traveled. 0 to t1:

d1 = 1.935 − 8 = 6.065 ft

t1 to t2:

d2 = 8.879 − 1.935 = 6.944 ft

t2 to t4 :

d3 = 8 − 8.879 = 0.879 ft

Adding,

d = d1 + d 2 + d3

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

d = 13.89 ft W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 9. a = 3e − 0.2 t v

t

∫ 0 dv = ∫ 0 a dt v − 0= ∫

t − 0.2t 3e dt 0

3 e− 0.2t = − 0.2

(

)

(

t

0

v = − 15 e − 0.2t − 1 = 15 1 − e − 0.2t

At t = 0.5 s,

(

v = 15 1 − e − 0.1 x

)

)

v = 1.427 ft/s W

t

∫ 0 dx = ∫ 0 v dt t

t 0

(

x − 0 = 15 ∫ 1 − e

(

−0.2t

)

1 −0.2t ⎞ ⎛ dt = 15 ⎜ t + e ⎟ 0.2 ⎝ ⎠0

x = 15 t + 5e − 0.2t − 5 At t = 0.5 s,

(

)

)

x = 15 0.5 + 5e− 0.1 − 5

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

x = 0.363 ft W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 10. Given:

a = −5.4sin kt ft/s2 , t

v0 =1.8 ft/s,

t

v − v0 = ∫ 0 a dt = − 5.4 ∫ 0 sin kt dt = v − 1.8 = Velocity:

t

0

v = 1.8cos kt ft/s t

x −0 =

When t = 0.5 s,

5.4 cos kt k

k = 3 rad/s

5.4 ( cos kt − 1) = 1.8cos kt − 1.8 3

t

x − x0 = ∫ 0 v dt = 1.8 ∫ 0 cos kt dt =

Position:

x0 = 0,

t 1.8 sin kt 0 k

1.8 ( sin kt − 0 ) = 0.6sin kt 3

x = 0.6sinkt ft kt = ( 3)( 0.5) = 1.5 rad v = 1.8cos1.5 = 0.1273 ft/s x = 0.6sin1.5 = 0.5985 ft

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

v = 0.1273 ft/s W x = 0.598 ft W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 11. Given:

a = −3.24sin kt − 4.32 cos kt ft/s2 , x 0 = 0.48 ft,

k = 3 rad/s

v 0 = 1.08 ft/s

t

t

t

v − v0 = ∫0 a dt = − 3.24 ∫0 sin kt dt − 4.32 ∫0 cos kt dt v − 1.08 = =

t

3.24 cos kt k

− 0

t

4.32 sin kt k

0

3.24 4.32 ( coskt − 1) − ( sin kt − 0) 3 3

= 1.08cos kt − 1.08 − 1.44 sin kt Velocity:

v = 1.08cos kt − 1.44sin kt ft/s t

t

t

x − x0 = ∫ 0 v dt = 1.08 ∫ 0 cos kt dt − 1.44 ∫ 0 sin kt dt x − 0.48 =

1.08 sin kt k

t

+ 0

1.44 cos kt k

t 0

1.08 ( sin kt − 0 ) + 1.44 ( cos kt − 1) 3 3 = 0.36sin kt + 0.48cos kt − 0.48 =

P osition:

x = 0.36sin kt + 0.48cos kt ft

When t = 0.5 s,

kt = ( 3)(0.5 ) = 1.5 rad v = 1.08cos1.5 − 1.44sin1.5 = −1.360 ft/s x = 0.36sin1.5 + 0.48 cos1.5 = 0.393 ft

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

v = − 1.360 ft/s ! x = 0.393 ft !

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 12. a = kt mm/s 2

Given: At t = 0,

v = 400 mm/s;

at t =1 s,

where k is a constant.

v = 370 mm/s,

x = 500 mm

1 2 v t t ∫400 dv = ∫0 a dt = ∫0 kt dt = 2 kt v − 400 =

1 2 kt 2

or

v = 400 +

1 2 k (1) = 370, 2

At t = 1 s,

v = 400 +

Thus

v = 400 − 30t2 mm/s v7 = 400 − ( 30)( 7)

At t = 7 s, When v = 0,

400 − 30 2t = 0.

Then 2t = 13.333 s2 ,

1 2 kt 2

k = −60 mm/s3

2

v7 = −1070 mm/s W t = 3.651 s

For 0 ≤ t ≤ 3.651 s,

v >0

and

x is increasing.

For t > 3.651 s,

v 0 and reaches x = 2 m. At x = 2 m, v = 0 and 2 a < 0, so that v becomes negative and x decreases. Thus, x = 2 m is never reached. 3 xmax = 2 m !

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

(b) Velocity when total distance traveled is 3 m.

The particle will have traveled total distance d = 3 m when d − xmax = xmax − x or 3 − 2 = 2 − x or x = 1 m. 2

7 4  Using v = − 12  x −  − , which applies when x is decreasing, we get 3 3  2

7 4  v = − 12 1 −  − = − 20 3 3 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

v = − 4.47 m/s !

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 21.

(

a = k 1 − e −x

Note that a is a function of x.

(

)

)

Use v dv = a dx = k 1 − e−x dx with the limits v = 9 m/s when x = − 3 m, and v = 0 when x = 0. 0 0 −x ∫ 9 v dv = ∫ − 3 k (1 − e ) dx

⎛ v2 ⎞ ⎜⎜ ⎟⎟ ⎝2 ⎠

0− (a)

0

(

= k x + e− x 9

)

0

−3

92 = k ⎡⎣ 0 + 1 − ( − 3) − e3 ⎤⎦ = − 16.0855k 2 k = 2.52 m/s 2 W

k = 2.5178

(

)

(

)

Use v dv = a dx = k 1 − e− x dx = 2.5178 1 − e− x dx with the limit v = 0 when x = 0. v x −x ∫ 0 v dv = ∫ 0 2.5178( 1 − e ) dx

v2 = 2.5178 x + e − x 2

(

(

)

x

(

)

= 2.5178 x + e− x − 1

0

)

(

v 2 = 5.0356 x + e − x − 1

1/2

)

v = ± 2.2440 x + e− x − 1

(b) Letting x = −2 m,

(

1/ 2

)

v = ± 2.2440 − 2 + e2 − 1

= ± 4.70 m/s

Since x begins at x = −2 m and ends at x = 0, v > 0. Reject the minus sign. v = 4.70 m/s W

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 22. a= v

dv = 6.8 e−0.00057 x dx

v x − 0.00057x dx ∫ 0 v dv = ∫ 0 6.8 e

v2 6.8 e − 0.00057x −0 = 2 − 0.00057

(

= 11930 1 − e −0.00057x

x 0

)

When v = 30 m/s.

( 30 ) 2 2

(

= 11930 1 − e − 0.00057x

)

1 − e − 0.00057x = 0.03772 e − 0.00057x = 0.96228 − 0.00057 x = ln (0.96228) = − 0.03845 x = 67.5 m W

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 23. a= v

Given:

dv = − 0.4v dx dv = − 0.4 dx

or

Separate variables and integrate using v = 75 mm/s when x = 0. v

x

∫ 75dv = − 0.4 ∫ 0

v − 75 = − 0.4 x

(a) Distance traveled when v = 0 x = 187.5 mm W

0 − 75 = − 0.4x

(b) Time to reduce velocity to 1% of initial value. v = (0.01)(75) = 0.75 t = − 2.5ln

0.75 75

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

t = 11.51 s W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 24. a =v

Given:

dv = − kv2 dx

Separate variables and integrate using v = 9 m/s when x = 0. dv

v x ∫ 9 v = − k ∫ 0 dx

ln

v = − kx 9

Calculate k using v = 7 m/s when x = 13 m. ln Solve for x .

7 = − ( k )(13 ) 9 x=−

k = 19.332 × 10− 3 m − 1

1 v v ln = −51.728 ln 9 9 k

(a) Distance when v = 3 m/s. ⎛ 3⎞ x = −51.728 ln ⎜ ⎟ ⎝9 ⎠

x = 56.8 m W

(b) Distance when v = 0. x = − 51.728 ln (0 )

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

x=∞W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 25. v dv = a dx = −k vdx, dx = −



x − x0 =

x dx x0

2 3/2 v − v3/2 3k 0

(

)

x0 = 0,

v0 = 25 ft/s

1 1/2 v dv k

1 v 2 = − ∫ v vdv = − v3/2 0 3k k or

x=

v v0

2⎡ ( 25)3/2 − v3/2 ⎤⎥⎦ = 2 ⎡⎣ 125 − v3/2 ⎤⎦ 3k ⎢⎣ 3k

Noting that x = 6 ft when v = 12 ft/s,

Then,

6 =

2 ⎡ 55.62 125 − 123/2 ⎤ = ⎣ ⎦ k 3k

x =

2 ⎡125 − v 3/2⎤ = 0.071916 125 − v 3/2 ⎦ ( 3)( 9.27 ) ⎣

3 k = 9.27 ft/s

or

(

)

v3/2 = 125 − 13.905x (a) When x = 8 ft,

v3/2 = 125 − (13.905)( 8) = 13.759 ( ft/s)

3/2

v = 5.74 ft/s W (b)

dv = a dt = − k vdt dt = −

t =−

At rest, v = 0

t=

1 dv k v1/ 2 v 1 2 1/2 v − v 1/2 ⋅ 2 ⎡⎣v 1/2⎤⎦ = v0 k k 0

( 2)( 25) 2v1/2 0 = 9.27 k

(

)

1/2

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

t = 1.079 s W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 29. x as a function of v. v = 1 − e −0.00057 x 154 2

⎛ v ⎞ e −0.00057 x = 1 − ⎜ ⎟ ⎝ 154 ⎠ ⎡ − 0.00057 x = ln ⎢1 − ⎣⎢

2 ⎛ v ⎞ ⎤ ⎜ ⎟ ⎥ ⎝ 154 ⎠ ⎥⎦

⎡ ⎛ v ⎞2 ⎤ x = −1754.4 ln ⎢1 − ⎜ ⎟ ⎥ ⎢⎣ ⎝ 154 ⎠ ⎦⎥

(1)

a as a function of x.

(

v2 = 23716 1 − e−0.00057 a =v

)

dv d ⎛ v2 ⎞ = ⎜ ⎟ = (11858 )( 0.00057 ) e−0.0005x dx dx ⎜⎝ 2 ⎟⎠

⎡ a = 6.75906 e −0.00057 x = 6.75906⎢ 1 − ⎢⎣

⎛ v ⎞ ⎜ ⎟ ⎝ 154 ⎠

2⎤

⎥ ⎥⎦

(2)

(a) v = 20 m/s. x = 29.8 m e

From (1),

x = 29.843

From (2),

a = 6.64506

a = 6.65 m/s2 e

From (1),

x = 122.54

x = 122.5 m e

From (2),

a = 6.30306

a = 6.30 m/s2 e

(b) v = 40 m/s.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 11, Solution 30. 0.3

Given: v = 7.5 (1 − 0.04 x)<...


Similar Free PDFs