Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 10 PDF

Title Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 10
Course Mechatronics Engineering
Institution Trường Đại học Bách khoa Hà Nội
Pages 139
File Size 10.9 MB
File Type PDF
Total Downloads 623
Total Views 810

Summary

COSMOS: Complete Online Solutions Manual Organization System Chapter 10, Solution 1. Link ABC: Assume clockwise Then, for point C xC (125 mm ) and for point D xD xC (125 mm ) and for point E 250 mm 2 xD xD 3 375 mm xE Link DEFG: xD ( 375 mm ) Thus (125 mm ) ( 375 mm ) 1 3 ( ) 100 G 100 2 mm 3 Then 2...


Description

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 1.

Link ABC: Assume δθ clockwise Then, for point C

δ xC = ( 125 mm) δθ and for point D

δ xD = δ xC = ( 125 mm) δθ and for point E

 250 mm 

2

δ xE =   δ xD = δ xD 3  375 mm  Link DEFG:

δ xD = ( 375 mm ) δφ

Thus

(125 mm ) δθ = (375 mm ) δφ 1 3

δφ = δθ  δ G = 100 2 mm δφ =   3

(

Then

)

100

 2 mm δθ 

 δ y G = δ G cos 45 ° = 

100   100  2 mm δθ cos 45 ° =  mm  δθ  3   3 

Virtual Work:

δU = 0:

Assume P acts downward at G

(9000 N ⋅mm )δθ − (180 N )(δ xE mm ) + P( δ yG mm )

=0

2 100  9000δθ − 180  × 125 δθ  + P  δθ  = 0 3    3  or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

P = 180.0 N ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 2.

FA = 20 lb at A

Have

FD = 30 lb

δ y A = (16 in.) δθ

Link ABC:

Link BF:

at D

δ yF = δ yB

δ yB = (10 in.) δθ δ y F = ( 6 in.) δφ = ( 10 in.) δθ

Link DEFG: or

5 3

δφ = δθ δ y G = (12 in.) δφ = ( 20 in. )δθ dED =

( 5.5 in.)2 + ( 4.8 in.)2 5

= 7.3 in. 

δ D = (7.3 in. )δφ =  × 7.3 in. δθ 3  δ xD = Virtual Work:

4.8 4.8  5  δD = × 7.3 in. δθ = (8 in.)δθ  7.3 7.3  3 

Assume P acts upward at G

δU = 0:

F Aδ y A + FDδ x D + Pδ y G = 0

or

( 20 lb ) (16 in. ) δθ  + (30 lb)  ( 8 in.) δθ 

or

P = − 28.0 lb

+ P ( 20 in.) δθ  = 0

P = 28.0 lb 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 3.

Link ABC: Assume δθ clockwise Then, for point C

δ xC = (125 mm ) δθ and for point D

δ xD = δ xC = (125 mm ) δθ and for point E

 250 mm  2  δ xD = δ xD 375 mm 3  

δ xE =  Link DEFG:

δ xD = ( 375 mm )δφ

Thus

( 125 mm) δθ = ( 375 mm ) δφ or

Virtual Work:

δ U = 0:

1 3

δφ = δθ Assume M acts clockwise on link DEFG

( 9000 N ⋅ mm) δθ − (180 N )( δ x E mm ) + M δφ = 0 2  1  9000 δθ − 180  ⋅125 δθ  + M  δθ  = 0 3  3  or

M = 18000 N ⋅ mm

or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

M = 18.00 N ⋅ m



COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 4.

FA = 20 lb at A

Have

FD = 30 lb

Link ABC:

δ yA = (16 in.) δθ

Link BF:

at D

δ yF = δ yB

δ y B = ( 10 in.) δθ Link DEFG:

δ yF = ( 6 in.) δφ = ( 10 in. )δθ or

d ED =

δφ =

5 δθ 3

( 5.5 in.)2 + ( 4.8 in.)2 5 3

= 7.3 in. 

δ D = (7.3 in. )δφ =  × 7.3 in. δθ δ xD = Virtual Work:



4.8 4.8  5  δD = × 7.3 in.  δθ = (8 in.) δθ 7.3 7.3  3 

Assume M acts

on DEFG

δ U = 0:

FAδ y A + FDδ xD + M δφ = 0

or

(20 lb ) (16 in. )δθ  + (30 lb ) (8 in. )δθ 

or

M = − 336.0 lb ⋅ in.

5  + M  δθ  = 0 3  M = 28.0 lb ⋅ ft

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 5.

Assume δθ

δ xA = 10δθ in.

δ yC = 4 δθ in. δ yD = δ yC = 4δθ in.

δφ =

δ yD 6

2 = δθ 3 2 

 

δ xG = 15 δφ = 15  δθ  = 10 δθ in. 3 Virtual Work:

δU = 0:

Assume that force P is applied at A.

δ U = − Pδ xA + 30δ yC + 60δ yD + 240δφ + 80δ xG = 0 2  − P ( 10 δ θ in.) + ( 30 lb)( 4δθ in.) + ( 60 lb)( 4 δθ ) + ( 240 lb⋅ in.)  δθ   3  + ( 80 lb)( 10 δθ in.) = 0 −10P + 120 + 240 + 160 + 800 = 0 10P = 1320

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

P = 132.0 lb



COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 6.

Note:

(a)

x E = 2 xD

δ xE = 2δ xD

x G = 3x D

δ xG = 3 δ xD

x H = 4x D

δ xH = 4 δ xD

x I = 5x D

δ xI = 5 δ xD

Virtual Work:

δ U = 0: FG δ xG − FSPδ xI = 0

(90 N ) (3 δ x D ) − FSP (5 δ x D ) = 0 or Now

FSP = 54.0 N 

FSP = k ∆x I 54 N = (720 N/m ) ∆xI ∆xI = 0.075 m

and

1 4

1 5

δ x D = δx H = δx I ∆xH =

4 4 ∆xI = ( 0.075 m) = 0.06 m 5 5 or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

∆xH = 60.0 mm



COSMOS: Complete Online Solutions Manual Organization System

(b)

Virtual Work:

δ U = 0: FG δ xG + FH δ xH − FSP ( δ xI ) = 0

(90 N )(3 δ xD ) + (90 N )(4 δ xD ) − FSP (5 δ xD ) = 0 or Now

FSP = 126.0 N 

FSP = k ∆xI

126.0 N = ( 720 N/m) ∆xI ∆xI = 0.175 m From Part (a)

∆x H =

4 4 ∆x = ( 0.175 m) = 0.140 m 5 I 5 or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

∆xH = 140.0 mm



COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 7.

Note:

(a)

x E = 2x D

δ xE = 2 δ xD

xG = 3xD

δ xG = 3δ xD

xH = 4 x D

δ xH = 4δ xD

x I = 5x D

δ xI = 5 δ xD

Virtual Work:

δ U = 0: FE δ xE − FSP δ xI = 0

(90 N )(2 δ xD ) − FSP (5δ xD ) = 0 or Now

FSP = 36.0 N ⊳

FSP = k ∆xI

36 N = (720 N/m ) ∆xI ∆xI = 0.050 m and

1 4

1 5

δ x D = δ xH = δ x I ∆x H =

4 4 ∆x I = ( 0.050 m) = 0.04 m 5 5 or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

∆xH = 40.0 mm



COSMOS: Complete Online Solutions Manual Organization System

(b)

Virtual Work:

δ U = 0: FD δ xD + FE δ xE − FSPδ xI = 0

(90 N )δ xD + (90 N )(2 δ xD ) − FSP (5 δ x D ) = 0 or Now

FSP = 54.0 N ⊳

FSP = k ∆xI

54 N = ( 720 N/m) ∆xI ∆xI = 0.075 m

From Part (a)

∆ xH =

4 4 ∆xI = ( 0.075 ) = 0.06 m 5 5 or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

∆xH = 60.0 mm



COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 8.

Assume δ yA

δ yA 16 in.

=

δ yC 8 in.

1 2

δ yC = δ yA

;

Bar CFDE moves in translation 1 2

δ y E = δ yF = δ yC = δ yA Virtual Work:

δ U = 0: − P ( δ y A in. ) + ( 100 lb)( δ y E in.) + (150 lb) (δ y F in.) = 0 1  1  − P δ y A + 100  δ y A  + 150  δ y A  = 0 2  2  P = 125 lb

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

P = 125 lb 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 9.

Have

y A = 2 lcos θ;

θ

CD = 2 lsin ; 2

δ yA = −2 l sin θ δθ θ δ ( CD) = l cos δθ 2

Virtual Work:

δ U = 0: − Pδ yA − Qδ ( CD) = 0

θ   − P (− 2l sin θ δθ ) − Q  l cos δθ  = 0 2   Q = 2P

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

sin θ  θ  cos    2

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 10.

Virtual Work: Have

x A = 2l sinθ

δ xA = 2 l cos θ δθ and

y F = 3l cos θ

δ yF = −3 lsin θ δθ Virtual Work:

δU = 0: Q δ xA + Pδ yF = 0 Q ( 2l cos θ δθ ) + P ( −3l sin θ δθ ) = 0

Q=

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

3 Ptan θ ⊳ 2

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 11.

Virtual Work: We note that the virtual work of A x , A y and C is zero, since A is fixed and C is ⊥ to δ xC .

Thus:

δ U = 0:

Pδ x D + Qδ y D = 0

xD = 3 l cos θ

δ x D = − 3l sin θ δθ

y D = l sin θ

δ y D = l cos θ δθ

P( − 3l sinθ δθ ) + Q( l cosθ δθ ) = 0

− 3Pl sin θ + Ql cos θ = 0 Q =

3P sin θ = 3P tan θ cosθ

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Q = 3P tanθ 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 12.

x A = ( a + b) cos θ

δ xA = − ( a + b )sin θ δθ

y G = a sinθ

δ yG = a cos θ δθ

Virtual Work: The reactions at A and B are perpendicular to the displacements of A and B hence do no work.

δ U = 0:

Tδ xA + Wδ yG = 0 T − ( a + b) sin θ δθ  + W ( a cosθ δθ ) = 0

−T ( a + b ) sin θ + Wa cosθ = 0 T =

a W cot θ a +b

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

T =

a W cotθ  a+b

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 13.

y H = 2l sin θ

Note:

l = 600 mm (length of a link )

Where Then

δ y H = 2l cos θ δθ

Also

1 1 1 W = mg = ( 450 kg ) 9.81 m/s2 2 2 2

(

)

= 2207.3 N 2

3  5  d AF =  l cosθ  +  l sin θ  4 4     =

δ d AF =

l 9 + 16sin 2 θ 4 l 16sin θ cos θ δθ 4 9 + 16sin 2 θ

= 4l

Virtual Work:

Fcyl For θ = 30 °

sin θ cosθ 9 + 16sin 2 θ sin θ

9 + 16sin 2 θ

Fcyl

sin θ cosθ 9 + 16sin 2 θ

δθ

1  Fcyl δ d AF −  W  δ y H = 0 2 

δ U = 0:  Fcyl  4l  

2

  

δθ  − ( 2.2073 kN )( 2l cos θ δθ ) = 0

= 1.10365 kN

sin 30° 9 + 16sin 2 30°

= 1.10365 kN

or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Fcyl = 7.96 kN 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 14.

From solution of Problem 10.13: Fcyl

sin θ 9 + 16sin 2 θ

= 1.10365 kN

Fcyl = 35 kN

Then for

( 35 kN )

sinθ 9 + 16sin 2θ

(31.713 sin θ )2

= 1.10365 kN

= 9 + 16sin2 θ

sin 2θ =

9 989.71 or

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

θ = 5.47 ° 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 15.

yB = a sin θ ⇒ δ yB = a cos θδθ

ABC:

yC = 2a sin θ ⇒ δ yC = 2a cos θδθ CDE: Note that as ABC rotates counterclockwise, CDE rotates clockwise while it moves to the left.

δ yC = aδφ

Then

2a cos θδθ = a δφ

or

δφ = 2 cos θδθ

or Virtual Work:

δ U = 0: − Pδ y B − Pδ yC + M δφ = 0 −P( a cosθδθ ) − P ( 2 a cosθδθ ) + M (2 cosθδθ ) = 0 or M =

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

3 Pa  2

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 16.

First note l sin θ +

3 l sin φ = l 2

sin φ =

2 (1 − sin θ ) 3

or Then

2 cosφ δφ = − cos θ δθ 3

or

δφ = −

2 cos θ δθ 3 cos φ = 5 + 8sin θ − 4 sin 2 θ

Now

x C = − l cosθ +

Then

δ xC = l sinθ δθ −

3 l cos φ 2 3 l sinφ δφ 2

  − 2 cos θ  3 = l sinθ − sin φ   δθ 2  3 cos φ  

= l ( sinθ + cosθ tanφ )δθ

 = l sinθ + 

2cos θ (1 − sin θ )

  δθ 5 + 8sin θ − 4sin θ  2

Virtual Work:

δ U = 0: M δθ − Pδ xC = 0  M δθ − Pl sin θ + 

2 cos θ (1 − sin θ )

 δθ = 0 5 + 8sinθ − 4sin2 θ   or M = Pl  sinθ + 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

2cosθ (1 − sinθ )

  5 + 8sinθ − 4 sin 2θ 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 17.

Have x B = l sin θ

δ x B = l cos θδθ yA = lcos θ

δ y A = −l sin θδθ Virtual Work:

δ U = 0: M δθ − Pδ x B + Pδ y A = 0 M δθ − P ( l cosθδθ ) + P( − l sin θδθ ) = 0 M = Pl ( sinθ + cosθ ) 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 18.

xD = l cos θ

Have

δ x D = − l sin θδθ yD = 3l sin θ

δ yD = 3 lcos θδθ Virtual Work:

δU = 0: M δθ − (P cos β ) δx D − (P sin β) δ yD = 0

M δθ − ( P cos β ) ( −l sin θδθ ) − ( P sin β )( 3l cos θδθ ) = 0 M = Pl( 3sin β cos θ − cos β sin θ )

(1)

(a) For P directed along BCD, β = θ Equation (1):

M = Pl ( 3sin θ cos θ − cos θ sin θ ) M = Pl ( 2sin θ cosθ )

M = Pl sin 2θ 

(b) For P directed , β = 90° Equation (1):

M = Pl ( 3sin 90 °cos θ − cos90 ° sin θ ) M = 3Pl cos θ 

(c) For P directed Equation (1):

, β = 180° M = Pl ( 3sin180° cos θ − cos180° sin θ )

M = Pl sin θ 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 10, Solution 19.

Analysis of the geometry:

Law of Sines

sin φ sinθ = AB BC sin φ =

AB sin θ BC

(1)

Now

xC = AB cosθ + BC cosφ

δ x C = − AB sin θδθ − BC sin φδφ cosφ δφ =

Now, from Equation (1)

δφ =

or

(2)

AB cosθδθ BC

AB cos θ δθ BC cosφ

(3)

From Equation (2)

 AB cos θ  δθ   BC cos φ 

δ x C = − AB sin θδθ − BC sin φ  or

Then

δ xC = −

AB ( sinθ cosφ + sinφ cosθ )δθ cos φ

δ xC = −

AB sin ( θ + φ) δθ cosφ continued

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

δ U = 0: − Pδ xC − Mδθ = 0

Virtual Work:

 AB sin (θ + φ )  δθ  − M δθ = 0 −P  − cos φ  

M = AB

Thus,

sin (θ + φ ) P cosφ

(4)

For the given conditions: P = 1.0 kip = 1000 lb, AB = 2.5 in., and BC = 10 in.: (a) When

θ = 30 °: sin φ = M = ( 2.5 in.)

2.5 sin 30°, 10

sin ( 30 ° + 7.181 °) cos 7.181°

( 1.0 kip)

φ = 7.181 ° = 1.5228 kip⋅ in. = 0.1269 kip ⋅ ft or M = 126.9 lb ⋅ft

(b) When

θ = 150 °: sin φ = M = ( 2.5 in.)

2.5 sin150°, 10

sin (150° + 7.181° ) cos 7.181°

(1.0 kip)



φ = 7.181 °

= 0.97722 kip ⋅in. or M = 81.4 lb ⋅ ft

Vector Mechanics for Engineers: Statics and Dyn...


Similar Free PDFs