Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 04 PDF

Title Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 04
Course Mechatronics Engineering
Institution Trường Đại học Bách khoa Hà Nội
Pages 227
File Size 26.9 MB
File Type PDF
Total Downloads 11
Total Views 141

Summary

Download Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 04 PDF


Description

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 1. Free-Body Diagram:

(a)

ΣM B = 0:

− Ay ( 3.6 ft ) − ( 146 lb)( 1.44 ft) − ( 63 lb)( 3.24 ft) − ( 90 lb)( 6.24 ft) = 0

Ay = − 271.10 lb (b)

Σ M A = 0:

or A y = 271 lb ⊳

By( 3.6 ft) − (146 lb)( 5.04 ft) − (63 lb)(6.84 ft ) − (90 lb)(9.84 ft ) = 0 B y = 570.10 lb

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

or B y = 570 lb



COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 2. Free-Body Diagram:

(a)

ΣM C = 0:

(3.5 kips ) (1.6 + 1.3 + 19.5 cos15o ) ft −

2FB ( 1.6 + 1.3 + 14) ft + ( 9.5 kips)( 1.6 ft) = 0

2 FB = 5.4009 kips or FB = 2.70 kips



(b) ΣM B = 0:

( 3.5 kips) (19.5cos15 o − 14 )ft  − (9.5 kips )  14 (

+1.3 )ft  + 2 FC 14 ( +1.3 +1.6 )ft  = 0

2 FC = 7.5991 kips, or or FC = 3.80 kips

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 3. Free-Body Diagram:

(a)

ΣM K = 0:

( 25 kN)( 5.4 m) + ( 3 kN)( 3.4 m) − 2FH ( 2.5 m) + ( 50 kN )( 0.5 m) = 0 2FH = 68.080 kN

(b)

ΣM H = 0:

or FH = 34.0 kN



( 25 kN)( 2.9 m) + ( 3 kN )( 0.9 m ) − ( 50 kN )( 2.0 m) + 2FK ( 2.5 m ) = 0 2FK = 9.9200 kN

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

or FK = 4.96 kN



COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 4. Free-Body Diagram: (boom)

(a)

ΣM B = 0:

( 25 kN)( 2.6 m) + ( 3 kN)( 0.6 m ) − ( 25 kN)( 0.4 m) − TCD ( 0.7 m) = 0 or TCD = 81.1 kN ⊳

TCD = 81.143 kN (b)

ΣFx = 0:

Bx = 0 so that B = By

ΣFy = 0:

( −25 − 3 − 25 − 81.143) kN

+B =0

B = 134.143 kN

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

or B = 134.1 kN



COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 5. Free-Body Diagram:

a1 = ( 20 in. ) sin α − ( 8 in.) cos α a 2 = ( 32 in.) cosα − ( 20 in.) sin α b = ( 64 in.) cosα From free-body diagram of hand truck

ΣM B = 0: P ( b ) − W ( a2 ) + W ( a1 ) = 0

(1)

ΣFy = 0: P − 2w + 2 B = 0

(2)

α = 35°

For

a1 = 20 sin 35 ° − 8 cos 35° = 4.9183 in. a2 = 32 cos 35 ° − 20 sin 35° = 14.7413 in.

b = 64cos35 ° = 52.426 in. (a)

From Equation (1)

P ( 52.426 in.) − 80 lb (14.7413 in.) + 80 lb (4.9183 in. ) = 0 ∴ P = 14.9896 lb (b)

or P = 14.99 lb ⊳

From Equation (2)

14.9896 lb − 2 (80 lb ) + 2 B = 0 ∴ B = 72.505 lb

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

or

B = 72.5 lb ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 6.

a1 = ( 20 in. ) sin α − ( 8 in.) cos α

Free-Body Diagram:

a 2 = ( 32 in.) cosα − ( 20 in.) sin α b = ( 64 in.) cosα From free-body diagram of hand truck

ΣM B = 0:

P ( b) − W ( a2 ) + W ( a1) = 0 (1)

ΣFy = 0: P − 2w + 2 B = 0

(2)

α = 40°

For

a1 = 20sin 40 ° − 8cos 40 ° = 6.7274 in. a2 = 32 cos 40 ° − 20 sin 40 ° = 11.6577 in.

b = 64cos40 ° = 49.027 in. (a)

From Equation (1)

P ( 49.027 in.) − 80 lb (11.6577 in.) + 80 lb ( 6.7274 in.) = 0 P = 8.0450 lb or P = 8.05 lb ⊳ (b)

From Equation (2)

8.0450 lb − 2( 80 lb) + 2 B = 0 B = 75.9775 lb or B = 76.0 lb ⊳

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 7. Free-Body Diagram:

(a) a = 2.9 m

ΣFx = 0:

ΣM B = 0:

Ax = 0

− ( 12 m) A y + ( 12 − 2.9) m ( 3.9 kN) +  ( 12 − 2.9 − 2.6) m ( 6.3 kN) +  ( 2.8 + 1.45 ) m ( 7.9 kN ) + (1.45 m )( 7.3 kN ) = 0

or

ΣF y = 0: or

Ay = 10.0500 kN

or A = 10.05 kN



or B = 15.35 kN



10.0500 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + B y = 0 By = 15.3500 kN

(b) a = 8.1 m

ΣM B = 0:

− ( 12 m) A y +  ( 12 − 8.1) m ( 3.9 kN) +  ( 12 − 8.1− 2.6) m ( 6.3 kN) +  (2.8 + 4.05 ) m  (7.9 kN ) + (4.05 m )(7.3 kN ) = 0

or

ΣF y = 0: or

Ay = 8.9233 kN

or A = 8.92 kN



8.9233 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + B y = 0 By = 16.4767 kN

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

or B = 16.48 kN



COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 8. Free-Body Diagram:

(a)

ΣFx = 0:

ΣM B = 0:

Ax = 0

− (12 m ) A y + (12 m − a )(3.9 kN ) + (12 − 2.6 ) m − a  (6.3 kN ) a a  +  2.8 m +  ( 7.9 kN ) + ( 7.3 kN) = 0 2 2  

or

( 12 m) A y = 128.14 kN⋅ m − ( 10.2 kN) a + ( 15.2 kN) a2 ( 12 m) Ay

= 128.14 kN⋅ m − ( 2.6 kN) a

Thus A y is maximum for the smallest possible value of a:

a = 0⊳ (b) The corresponding value of A y is

( Ay )max = 10.6783 kN, and ΣFy = 0:

or A = 10.68 kN



or B = 14.72 kN



10.6783 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + By = 0 B y = 14.7217 kN

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 9. Free-Body Diagram:

For (TC )max , T B = 0

ΣM O = 0:

(TC )max (4.8 in. ) − (80 lb )(2.4 in. ) = 0 (TC ) = 40 lb  > [Tmax = 36 lb ] max 

(TC )max = 36.0 lb For (TC ) min , TB = Tmax = 36 lb ΣM O = 0:

(TC )min ( 4.8 in.) + ( 36 lb)(1.6 in.) − ( 80 lb)( 2.4 in.) = 0 ( TC )min

= 28.0 lb

Therefore:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

28.0 lb ≤ TC ≤ 36.0 lb ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 10. Free-Body Diagram:

For Qmin , TD = 0 ΣM B = 0:

(7.5 kN )(0.5 m ) − Q min (3 m ) = 0 Qmin = 1.250 kN

For Qmax , TB = 0 ΣM D = 0:

(7.5 kN )( 2.75 m ) − Qmax ( 0.75 m ) = 0 Qmax = 27.5 kN

Therefore:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

1.250 kN ≤ Q ≤ 27.5 kN ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 11. Free-Body Diagram:

ΣM D = 0:

(7.5 kN )( 2.75 m ) − TB (2.25 m ) + (5 kN )(1.5 m ) − Q (0.75 m ) = 0 Q = ( 37.5 − 3TB ) kN

ΣM B = 0:

(1)

(7.5 kN )(0.5 m ) − (5 kN )(0.75 m ) + TD (2.25 m ) − Q (3 m ) = 0 Q = ( 0.75 TD ) kN

(2)

For the loading to be safe, cables must not be slack and tension must not exceed 12 kN. Thus, making 0 ≤ TB ≤ 12 kN in. (1), we have 1.500 kN ≤ Q ≤ 37.5 kN

(3)

And making 0 ≤ TD ≤ 12 kN in. (2), we have 0 ≤ Q ≤ 9.00 kN (3) and (4) now give:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(4) 1.500 kN ≤ Q ≤ 9.00 kN ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 12. Free-Body Diagram:

For (WA ) min , E = 0 ΣM F = 0:

( WA ) min ( 7.5 ft) + ( 9 lb)( 4.8 ft) + ( 28 lb)( 3 ft) − ( 90 lb)( 1.8 ft) = 0 (WA )min = 4.6400 lb

For (W A )max , F = 0 ΣM E = 0:

(WA )max (1.5 ft ) − (9 lb )(1.2 ft ) − ( 28 lb)( 3 ft) − ( 90 lb)( 7.8 ft) =

( WA ) max

0

= 531.20 lb

Thus

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

4.64 lb ≤ WA ≤ 531 lb ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 13. Free-Body Diagram:

ΣM D = 0:

(750 N )(0.1 m − a ) − (750 N )( a + 0.075 m − 0.1 m ) − (125 N )(0.05 m ) + B (0.2 m ) = 0  87.5 N + 0.2B  a=  1500 N  

(1)

Using the bounds on B:

B = −250 N (i.e. 250 N downward) in (1) gives amin = 0.0250 m B = 500 N (i.e. 500 N upward) in (1) gives amax = 0.1250 m

Therefore:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

25.0 mm ≤ a ≤ 125.0 mm ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 14. Free-Body Diagram:

Note that W = mg is the weight of the crate in the free-body diagram, and that

0 ≤ E y ≤ 2.5 kN ΣFx = 0: ΣM A = 0: or ΣF y = 0: or

Ax = 0 − (1.2 m )(1.2 kN ) − ( 2.0 m )(1.6 kN ) − ( 3.8 m ) E y + ( 6 m ) W = 0

6W = 4.64 kN + 3.8 Ey

(1)

A y − 1.2 kN − 1.6 kN − E y + W = 0 Ay = 2.8 kN + Ey − W

(2)

Considering the smallest possible value of Ey : For

E y = 0, W = Wmin = 0.77333 kN

From (2) the corresponding value of A y is:

Ay = 2.02667 kN ≤ 2.5 kN, which satisfies the constraint on Ay . For the largest allowable value of E y :

E y = 2.5 kN , W = Wmax = 2.3567 kN From (2) the corresponding value of A y is:

A y = 2.9433 kN ≥ 2.5 kN which violates the constraint on Ay . Thus

( A y )max = 2.5 kN. Solving (1) and (2) for W with ( Ay )max

= 2.5 kN,

W = Wmax = 1.59091 kN Therefore:

773.33 N ≤ W ≤ 1590.91 N, or 773.33 N ≤ m(9.81 m/s2 ) ≤ 1590.91 N, and 78.8 kg ≤ m ≤ 162.2 kg ⊳

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 15. Free-Body Diagram:

Calculate lengths of vectors BD and CD:

BD = (11.2) 2 + (21.0) 2 ft = 23.8 ft 2

CD = (11.2) + (8.4) ft = 14.0 ft (a)

ΣM A = 0 :

 11.2 ft   11.2 ft  ( 221 lb)( 24 ft) +  TCD (11.4 ft) = 0 − (161 lb)( 24 ft) +  23 . 8 ft    14.0 ft  TCD = 150.0 lb ⊳

TCD = 150.000 lb

(b)

ΣF x = 0:

 11.2 ft   11.2 ft  161 lb −   ( 221 lb ) −   (150 lb ) + A x = 0 23.8 ft    14.0 ft  A x = 63.000 lb

ΣFy = 0:

A x = 63.000 lb

 21.0 ft   11.2 ft  Ay −   (221 lb) −  14.0 ft  (150 lb) = 0  23.8 ft   

285.00 A y = lb

A=

or

A2x + A 2y =

or

A y = 285.00 lb

2 2 (63) + (285) = 291.88 lb

( 63 )

θ = tan −1 285 = 77.535 ° Therefore

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

A = 292 lb

77.5° ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 16. Free-Body Diagram:

(a)

Equilibrium for ABCD:

ΣM C = 0:

( A cos 60° )( 1.6 in.) − ( 6 lb)( 1.6 in.) + ( 4 lb)( 0.8 in.) = A = 8.0000 lb

(b)

ΣF x = 0:

A = 8.00 lb

or

C x = 8.0000 lb

C y − 6 lb + (8 lb ) sin 60° = 0

or Cy = −0.92820 lb C =

60° ⊳

C x + 4 lb + ( 8 lb) cos 60° = 0 or Cx = − 8.0000 lb

ΣF y = 0:

0

C x2 + C y2 =

or

C y = 0.92820 lb

( 8) 2 + ( 0.92820) 2 =

8.0537 lb

 − 0.92820   = 6.6182° −8  

θ = tan−1  Therefore:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

C = 8.05 lb

6.62° ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 17. Free-Body Diagram:

Equations of equilibrium:

−( 330 N)( 0.25 m) B +

ΣΜ Α = 0:

+ sinα ( 0.3 m) B

cosα ( 0.5 m) = 0

(1)

ΣFx = 0:

Ax − B sinα = 0

(2)

Σ Fy = 0:

Ay − ( 330 N ) + Bcos α = 0

(3)

(a) Substitution α = 0 into (1), (2), and (3) and solving for A and B:

B = 165.000 N, Ax = 0, Ay = 165.0 N or A = 165.0 N , B = 165.0 N



(b) Substituting α = 90° into (1), (2), and (3) and solving for A and B:

B = 275.00 N, Ax = 275.00 N, Ay = 330.00 N

A=

Ax2 + A2y = (275) 2 + (330) 2 = 429.56 N

θ = tan− 1

Ay Ax

= tan− 1

330 = 50.194° 275

∴ A = 430 N

50.2°, B = 275 N



(c) Substituting α = 30 ° into (1), (2), and (3) and solving for A and B:

B = 141.506 N, Ax = 70.753 N, A y = 207.45 N, ⇒

A=

Ax2 + Ay2 =

θ = tan −1

Ay Ax

(70.753) 2 + (207.45) 2 = 219.18 N

= tan −1

207.45 = 71.168° 70.753 ∴ A = 219 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

71.2°, B = 141.5 N

60° ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 18. Free-Body Diagram:

Equations of equilibrium:

ΣΜ Α

−( 82.5 N ⋅ m) + B sin α ( 0.3 m) + B cos α ( 0.5 m) = 0

= 0:

(1)

Σ F x = 0:

A x − B sin α = 0

(2)

Σ Fy = 0:

Ay + Bcosα = 0

(3)

(a) Substituting α = 0 into (1), (2), and (3) and solving for A and B:

B = 165.000 N, Ax = 0, Ay = −165.0 N or A = 165.0 N , B = 165.0 N



∴ A = 275 N



(b) Substituting α = 90° into (1), (2), and (3) and solving for A and B:

B = 275.00 N, Ax = 275.00 N, Ay = 0 , B = 275 N

(c) Substituting α = 30 ° into (1), (2), and (3) and solving for A and B:

B = 141.506 N, Ax = 70.753 N, A y = −122.548 N A=

Ax2 + Ay2 = ( 70.753) 2 + (− 122.548)2 = 141.506 N

θ = tan −1

Ay Ax

− = tan 1

122.548 = 60.000° 70.753 ∴ A = 141.5 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

60.0°, B = 141.5 N

60° ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 19. Free-Body Diagram: (a) From free-body diagram of lever BCD

ΣMC = 0: TAB (50 mm ) − 200 N (75 mm ) = 0 ∴ TAB = 300 (b) From free-body diagram of lever BCD

ΣF x = 0: 200 N + C x + 0.6 (300 N ) = 0 ∴ C x = −380 N

or

C x = 380 N

ΣF y = 0: C y + 0.8 (300 N ) = 0

∴ C y = −240 N

or

C y = 240 N

( 380)2 + ( 240)2

2

2

 Cy  Cx

 − 240   = tan −1   = 32.276 °  − 380  

Then

C =

and

θ = tan −1 

Cx + Cy =

= 449.44 N

or C = 449 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

32.3° ⊳

COSMOS: Complete Online Solutions Manual Organization System

Chapter 4, Solution 20. Free-Body Diagram: From free-body diagram of lever BCD

ΣM C = 0: T AB ( 50 mm ) − P ( 75 mm ) = 0 ∴ TAB = 1.5P

(1)

ΣFx = 0: 0.6 TAB + P − Cx = 0 ∴ Cx = P + 0.6TAB

(2)

C x = P + 0.6 (1.5 P ) = 1.9 P

From Equation (1)

Σ Fy = 0: 0.8TAB − Cy = 0 ∴ Cy = 0.8TAB

(3)

Cy = 0.8 (1.5 P ) = 1.2 P

From Equation (1) From Equations (2) and (3)

C = C 2x + C 2y =

(1.9P )2 + (1.2P)2

= 2.2472P

Since C max = 500 N,

∴ 500 N = 2.2472Pmax or

Pmax = 222.49 lb or P = 222 lb

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hi...


Similar Free PDFs