Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 08 PDF

Title Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 08
Course Mechatronics Engineering
Institution Trường Đại học Bách khoa Hà Nội
Pages 149
File Size 12.4 MB
File Type PDF
Total Downloads 357
Total Views 471

Summary

COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 1. FBD Block B: Tension in cord is equal to W A 25 lb from of block A and pulley. 0: N WB cos 0, N WB cos (a) For smallest WB , slip impends up the incline, and F s N 0 0: F 25 lb WB sin 0 ( sin )WB 25 lb WB min 31 lb (...


Description

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 1. FBD Block B: Tension in cord is equal to W A = 25 lb from FBD’s of block A and pulley. ΣF y = 0:

N − W B cos30° = 0,

N = WB cos 30°

(a) For smallest WB , slip impends up the incline, and

F = µ s N = 0.35WB cos 30° ΣFx = 0:

F − 25 lb + WB sin 30° = 0

(0.35cos 30 ° + sin 30 °) WB

= 25 lb WB min = 31.1 lb 

(b) For largest WB , slip impends down the incline, and F = − µs N = − 0.35 WB cos30° ΣFx = 0:

Fs + WB sin 30° − 25 lb = 0

( sin 30° − 0.35 cos 30°) WB = 25 lb W B max = 127.0 lb 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 2. FBD Block B:

Tension in cord is equal to WA = 40 lb from FBD’s of block A and pulley. (a)

ΣFy = 0:

N − ( 52 lb) cos 25° = 0,

N = 47.128 lb

Fmax = µs N = 0.35( 47.128 lb) = 16.495 lb ΣFx = 0:

Feq − 40 lb + (52 lb ) sin 25° = 0

So, for equilibrium, Feq = 18.024 lb Since Feq > Fmax , the block must slip (up since F > 0)

∴ There is no equilibrium  (b) With slip,

F = µ k N = 0.25 ( 47.128 lb )

F = 11.78 lb

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

35° 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 3. FBD Block: Tension in cord is equal to P = 40 N, from FBD of pulley.

(

)

W = (10 kg ) 9.81 m/s 2 = 98.1 N Σ Fy = 0 :

N − (98.1 N) cos 20° + (40 N) sin 20° = 0

N = 78.503 N Fmax = µs N = (0.30)( 78.503 N ) = 23.551 N For equilibrium:

ΣFx = 0:

(40 N) cos 20° − (98.1 N ) sin 20° − F

Feq = 4.0355 N < Fmax, F = Feq

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

=0

∴ Equilibrium exists  F = 4.04 N

20° 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 4.

Tension in cord is equal to P = 62.5 N, from FBD of pulley.

(

)

W = (10 kg ) 9.81 m/s 2 = 98.1 N ΣF y = 0:

N − (98.1 N )cos 20 ° + (62.5 N ) sin15 ° = 0 N = 76.008 N

Fmax = µs N = (0.30 )( 76.008 N ) = 22.802 N For equilibrium:

ΣFx = 0:

( 62.5 N ) cos15 ° − (98.1 N ) sin 20 ° − F

Feq = 26.818 N > Fmax

=0

so no equilibrium,

and block slides up the incline 

Fslip = µ xN = (0.25 )( 76.008 N ) = 19.00 N F = 19.00 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

20° 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 5.

Tension in cord is equal to P from FBD of pulley.

(

)

W = (10 kg ) 9.81 m/s 2 = 98.1 N

ΣF y = 0:

N − ( 98.1 N ) cos 20° + P sin 25° = 0

(1)

ΣFx = 0:

P cos 25° − (98.1 N )sin 20° + F = 0

(2)

For impending slip down the incline, F = µ s N = 0.3 N and solving (1) and (2),

PD = 7.56 N

For impending slip up the incline, F = − µs N = − 0.3 N and solving PU = 59.2 N (1) and (2), so, for equilibrium

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

7.56 N ≤ P ≤ 59.2 N 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 6. FBD Block:

(

)

W = ( 20 kg) 9.81 m/s2 = 196.2 N

For θ min motion will impend up the incline, so F is downward and F = µs N ΣF y = 0:

ΣFx = 0:

(1) + ( 2) :

N − ( 220 N ) sinθ − (196.2 N) cos35° = 0 F = µsN = 0.3 ( 220 sin θ + 196.2 cos35 ° ) N

(1)

( 220 N ) cosθ

(2)

− F − (196.2 N ) sin 35° = 0

0.3( 220 sin θ + 196.2 cosθ ) N = ( 220 cosθ ) N − ( 196.2sin 35°) N

or

220 cosθ − 66sin θ = 160.751

Solving numerically:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

θ = 28.9° 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 7. FBD Block: For P min motion will impend down the incline, and the reaction force R will make the angle

φ s = tan−1 µ s = tan−1 (0.35) = 19.2900° with the normal, as shown.

Note, for minimum P, P must be ⊥ to R, i.e. β = φs (angle between P and x equals angle between R and normal).

β = 19.29° 

(b) then P = (160 N) cos ( β + 40°) = ( 160 N ) cos59.29° = 81.71 N (a)

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Pmin = 81.7 N 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 8.

FBD block (impending motion downward)

φ s = tan −1 µ s = tan −1 ( 0.25 ) = 14.036°

(a) Note: For minimum P,

P⊥ R

So

β = α = 90° − (30° + 14.036° ) = 45.964°

and

P = ( 30 lb )sin α = ( 30 lb) sin ( 45.964 °) = 21.567 lb P = 21.6 lb 

(b)

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

β = 46.0° 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 9. FBD Block:

For impending motion. φ s = tan −1 µ s = tan −1 ( 0.40)

φ s = 21.801°

Note β1,2 = θ 1,2 − φ s 10 lb 15 lb = sin φs sinβ1,2

From force triangle:

15 lb  sin ( 21.801°)  = 10 lb 

β1,2 = sin −1 

33.854 °  146.146°

55.655° So θ 1,2 = β1,2 + φs =  167.947° So

(a)

equilibrium for

0 ≤ θ ≤ 55.7° 

(b)

equilibrium for

167.9° ≤ θ ≤ 180° 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 10. FBD A with pulley: Tension in cord is T throughout from pulley FBD’s

ΣF y = 0:

2T − 20 lb = 0,

T = 10 lb

FBD E with pulley: For θ max , motion impends to right, and

φ s = tan −1 µ s = tan −1 ( 0.35) = 19.2900°

From force triangle, 20 lb 10 lb = , sin (θ − φs ) sinφs

2 sinφ s = sin (θ − φs )

θ = sin− 1( 2sin19.2900° ) + 19.2900° − 60.64° θ max = 60.6° 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 11. FBD top block: ΣFy = 0:

N1 − 196.2 N = 0

N1 = 196.2 N (a) With cable in place, impending motion of bottom block requires impending slip between blocks, so F1 = µs N1 = 0.4 (196.2 N )

F1 = 78.48 N FBD bottom block:

ΣFy = 0:

N2 − 196.2 N − 294.3 N = 0

N2 = 490.5 N F2 = µ s N2 = 0.4( 490.5 N) = 196.2 N ΣF x = 0:

− P + 78.48 N + 196.2 N = 0

P = 275 N



FBD block: (b) Without cable AB, top and bottom blocks will move together ΣF y = 0:

N − 490.5 N = 0,

Impending slip: ΣFx = 0:

N = 490.5 N

F = µ sN = 0.40 (490.5 N ) = 196.2 N − P + 196.2 N = 0

P = 196.2 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 12.

FBD top block:

Note that, since φs = tan− 1 µs = tan− 1 (0.40) = 21.8 ° > 15 °, no motion will impend if P = 0, with or without cable AB. (a) With cable, impending motion of bottom block requires impending slip between blocks, so F 1 = µs N ΣFy ′ = 0:

N1 − W1 cos15° = 0,

N1 = W1 cos15° = 189.515 N

F1 = µs N1 = ( 0.40 )W1 cos15° = 0.38637W1

F1 = 75.806 N FBD bottom block:

ΣF x′ = 0:

T − F1 − W1 sin15 ° = 0 T = 75.806 N + 50.780 N = 126.586 N

(

)

W2 = ( 30 kg) 9.81 m/s2 = 294.3 N ΣFy = 0 :

N2 − (189.515 N )cos ( 15 °) − 294.3 N + ( 75.806 N) sin15° = 0

N2 = 457.74 N F2 = µs N2 = ( 0.40) ( 457.74 N ) = 183.096 N

FBD block:

ΣF x = 0:

− P + ( 189.515 N) + (75.806 N ) cos15° + 126.586 N + 183.096 N = 0

P = 361 N



(b) Without cable, blocks remain together ΣFy = 0:

N − W1 − W2 = 0

N = 196.2 N + 294.3 N = 490.5 N

F = µs N = ( 0.40)( 490.5 N) = 196.2 N ΣF x = 0:

− P + 196.2 N = 0

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

P = 196.2 N



COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 13. FBD A:

Note that slip must impend at both surfaces simultaneously. N1 + T sin θ − 16 lb = 0

ΣFy = 0:

N1 = 16 lb − T sinθ Impending slip:

F1 = µs N1 = ( 0.20) (16 lb − T sin θ )

F1 = 3.2 lb − (0.2 ) T sin θ

(1)

F1 − T cosθ = 0

(2)

ΣF x = 0:

FBD B: ΣFy = 0:

N2 − N1 − 24 lb = 0,

N2 = N1 + 24 lb = 30 lb − T sinθ

Impending slip:

F2 = µs N 2 = ( 0.20 ) (30 lb − T sin θ ) = 6 lb − 0.2 T sin θ

ΣF x = 0:

10 lb − F1 − F2 = 0 10 lb = µ s ( N1 + N2 ) = ( 0.2)  N1 + ( N1 + 24 lb)

10 lb = 0.4 N 1 + 4.8 lb, Then Then

N1 = 13 lb

F1 = µ s N1 = ( 0.2 )(13 lb ) = 2.6 lb

(1) :

T sin θ = 3.0 lb

( 2) :

T cos θ = 2.6 lb

Dividing tan θ =

3 , 2.6

θ = tan −1

3 = 49.1° 2.6

θ = 49.1° 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 14. FBD’s:

Note: Slip must impend at both surfaces simultaneously.

A: ΣFy = 0:

N1 − 20 lb = 0,

Impending slip:

N1 = 20 lb

F1 = µs N1 = ( 0.25) ( 20 lb) = 5 lb

ΣF x = 0:

− T + 5 lb = 0,

T = 5 lb

ΣF y ′ = 0:

N 2 − ( 20 lb + 40 lb) cosθ − ( 5 lb) sinθ = 0 N2 = ( 60 lb) cos θ − ( 5 lb ) sin θ

B: Impending slip: Σ Fx′ = 0:

F2 = µ s N 2 = ( 0.25 )( 60cosθ − 5sin θ )lb − F2 − 5 lb − (5 lb ) cos θ + ( 20 lb + 40 lb ) sin θ = 0 − 20cosθ + 58.75sinθ − 5 = 0

Solving numerically,

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

θ = 23.4° 

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 15. FBD: For impending tip the floor reaction is at C.

(

)

W = ( 40 kg) 9.81 m/s2 = 392.4 N For impending slip φ = φ s = tan− 1 µ s = tan− 1( 0.35 )

φ = 19.2900 ° tan φ =

0.8 m EG

,

EG =

0.4 m = 1.14286 m 0.35

EF = EG − 0.5 m = 0.64286 m (a )

αs = tan− 1

EF 0.64286 m = tan− 1 = 58.109° 0.4 m 0.4 m

αs = 58.1°  (b)

P W = sin19.29° sin128.820 P = (392.4 N )( 0.424 ) = 166.379 N P = 166.4 N  Once slipping begins, φ will reduce to φk = tan− 1 µk . Then αmax will increase.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 16. First assume slip impends without tipping, so F = µ sN FBD

ΣFy = 0:

N + P sin 40° − W = 0,

N = W − P sin 40°

F = µs N = 0.35 (W − Psin 40° ) ΣFx = 0:

F − P cos 40° = 0

0.35W = P ( cos 40 ° + 0.35sin 40 °) (1)

Ps = 0.35317 W Next assume tip impends without slipping, R acts at C.

ΣM A = 0:

( 0.8 m ) P sin 40° + (0.5 m ) P cos 40° − (0.4 m )W

=0

Pt = 0.4458 W > Ps from (1)

(

∴ Pmax = Ps = 0.35317 (40 kg ) 9.81 m/s 2

)

= 138.584 N (a)

Pmax = 138.6 N ⊳

(b) Slip is impending ⊳

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 17. FBD Cylinder: For maximum M, motion impends at both A and B FA = µ A N A ; ΣFx = 0:

FB = µ B N B N A = FB = µ B N B

N A − FB = 0

F A = µ AN A = µ Aµ BN B

ΣFy = 0:

NB (1 + µ A µB ) = W

N B + FA − W = 0 1

or

NB =

and

FB = µ B NB =

1 + µ Aµ B

W

µB

1 + µ Aµ B

µA µB W 1 + µA µB

FA = µA µB N B =

ΣM C = 0: M − r ( FA + FB ) = 0 (a) For

µA = 0

and

W

M = Wr µ B

1+ µ A 1 + µA µ B

µ B = 0.36 M = 0.360Wr 

(b) For

µ A = 0.30

and

µ B = 0.36 M = 0.422Wr 

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 18. FBD’s: (a)

FBD Drum:

ΣM D = 0:

 10  F  ft  − 50 lb ⋅ ft = 0  12 

F = 60 lb Impending slip: N =

F

µs

=

60 lb = 150 lb 0.40

FBD arm:

ΣM A = 0:

( 6 in.) C + ( 6 in.) F − ( 18 in.) N

= 0

C = −60 lb + 3 (150 lb ) = 390 lb Ccw = 390 lb ⊳ (b) Reversing the 50 lb ⋅ ft couple reverses the direction of F , but the magnitudes of F and N are not changed. Then, using the FBD arm:

ΣM A = 0:

( 6 in.) C − ( 6 in.) F − ( 18 in.) N

= 0

C = 60 lb + 3(150 lb ) = 510 lb Cccw = 510 lb ⊳

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 19. For slipping, F = µ kN = 0.30 N

FBD’s:

(a) For cw rotation of drum, the friction force F is as shown. From FBD arm:

ΣM

A

(6 in. )(600 lb ) + (6 in. )F − (18 in. )N

= 0:

600 lb + F − 3

=0

F =0 0.30

600 lb 9

F =

Moment about D = (10 in. ) F = 666.67 lb ⋅in.

Mcw = 55.6 lb ⋅ft



(b) For ccw rotation of drum, the friction force F is reversed

ΣM A = 0:

(6 in.)( 600 lb ) − (6 in. ) F − (18 in.) N 600 lb − F − 3

=0

F =0 0.30

F =

600 lb 11

 10  600  Moment about D =  ft  lb = 45.45 lb ⋅ft  12  11  Mccw = 45.5 lb ⋅ft ⊳

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 20. FBD:

(a)

ΣM C = 0:

r (F − T ) = 0,

T =F

Impending slip: F = µs N or N =

Σ F x = 0:

F

µs

=

T

µs

F + T cos (25° + θ ) − W sin 25° = 0

T 1 + cos ( 25 ° + θ )  = W sin 25 ° Σ F y = 0:

(1)

N − W cos 25° + T sin( 25° + θ ) = 0

 1  T + sin( 25° + θ )  = W cos 25° 0.35   Dividing (1) by (2):

(2)

1 + cos ( 25 ° + θ ) = tan 25° 1 + sin( 25° + θ) 0.35

Solving numerically, 25° + θ = 42.53°

θ = 17.53° ⊳ (b) From (1)

T (1 + cos 42.53° ) = W sin 25 ° T = 0.252 W ⊳

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 8, Solution 21. FBD ladder: Note: slope of ladder =

L = 6.5 m, so AC =

4.5 m 12 13 = , so AC = ( 4.5 m ) = 4.875 1.875 m 5 12

4.875 m 3 = L, 6.5 m 4

and DC = BD =


Similar Free PDFs