Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 12 PDF

Title Solution Manual - Vector Mechanics Engineers Dynamics 8th Beer Chapter 12
Course Mechatronics Engineering
Institution Trường Đại học Bách khoa Hà Nội
Pages 160
File Size 15.6 MB
File Type PDF
Total Downloads 31
Total Views 149

Summary

COSMOS: Complete Online Solutions Manual Organization System Chapter 12, Solution 1. m 20 kg, g 3 2 W mg ( 20 )( 3 ) Vector Mechanics for Engineers: Statics and Dynamics, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 2007 The...


Description

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 1.

m = 20 kg, g = 3.75 m/s2 W = mg = ( 20 )( 3.75)

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

W = 75 N W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 2.

m = 2.000 kg W

At all latitudes, (a) φ = 0°,

(

)

g = 9.7807 1 + 0.0053 sin2 φ = 9.7807 m/s2 W = mg = ( 2.000 )( 9.7807 )

(b) φ = 45°,

(

)

g = 9.7807 1 + 0.0053 sin2 45° = 9.8066 m/s2 W = mg = ( 2.000 )( 9.8066 )

(c) φ = 60°,

W = 19.56 N W

(

W = 19.61 N W

)

g = 9.7807 1 + 0.0053 sin2 60° = 9.8196 m/s2 W = mg = ( 2.000 )( 9.8196 )

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

W = 19.64 N W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 3.

Assume g = 32.2 ft/s2 m =

W g

ΣF = ma : W − F s =  a W 1 −  = Fs g 

or

W=

Fs a 1− g

W a g

7

= 1−

2 32.2 W = 7.46 lb W

m=

7.4635 W = = 0.232 lb ⋅ s 2 /ft 32.2 g Σ F = ma : Fs − W =

W a g

 a Fs = W 1 +  g  2   = 7.46  1 +  32.2  

Fs = 7.92 lb W

For the balance system B, ΣM 0 = 0: bFw − bFp = 0 Fw = Fp   a a But, Fw = Ww 1 +  and Fp = Wp  1 +  g g    so that Ww = W p and mw =

Wp g

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

m w = 0.232 lb⋅ s 2 /ft W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 4.

Periodic time:

τ = 12 h = 43200 s

Radius of Earth:

R = 3960 mi = 20.9088 × 10 6 ft

Radius of orbit:

r = 3960 + 12580 = 16540 mi = 87.33 × 10 6 ft

Velocity of satellite:

v=

2πr

τ

=

( 2π ) ( 87.33 × 106 ) 43200

= 12.7019 × 103 ft/s It is given that (a)

mv = 750 × 10 3 lb ⋅ s m=

750 × 103 mv 2 = = 59.046 lb⋅ s /ft 3 v 12.7019 × 10 m = 59.0 lb ⋅ s2 /ft W

(b)

W = mg = ( 59.046 )( 32.2 ) = 1901 lb

W = 1901 lb W

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 5.

+ ∑ F y = ma y :

10 + 10 + 10 + 20 − 40 = ay =

ay =

( 32.2 )( 10) 40

40 ay 32.2

= 8.05 ft/s2

dv dy dv dv = =v dt dt dy dy

v dv = a y d y v v ∫ 0 v dv = ∫ 0 ay d y

v = 2 a yy =

1 2 v = ay y 2

(2 )(8.05 )(1.5 )

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

v = 4.91 ft/s W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 6.

Data: v0 = 108 km/h = 30 m/s, x f = 75 m (a)

Assume constant acceleration. a = v 0

dv dv = = constant dx dt

x

∫ v0 v dv = ∫ 0 f a dx 1 − v20 = a x f 2 a=−

v 20 2x f

=−

( 30) = − 6 m/s2 (2 )(75 )

t 0 ∫ v0 dv = ∫ 0f a dt

− v0 = a t f tf = − (b)

v0 − 30 = −6 a

t f = 5.00 s W

+ ∑ Fy = 0: N − W = 0 N=W

∑ Fx = ma: µ =−

µ=−

ma N

=−

− µ N = ma ma a =− W g

( − 6) 9.81

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

µ = 0.612 W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 7.

(a)

+ ∑ F = ma : Ff

a =− =−

m

− F f + W sin α = ma +

F W sinα = − f + g sin α m m

(

)

7500 N + 9.81 m/s2 sin 4° = − 4.6728 m/s2 1400 kg

a = 4.6728 m/s2



v0 = 88 km/h = 24.444 m/s From kinematics,

a= v

dv dx

0 xf ∫ 0 a dx = ∫ v0 v dv

1 a xf = − v02 2 v2 (24.444 ) xf = − 0 = − 2a 2 ( )(− 4.6728 ) 2

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

x f = 63.9 m W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 8.

(a) Coefficient of static friction. ΣFy = 0:

N −W = 0

N =W

v0 = 70 mi/h = 102.667 ft/s v 2 v 02 − = a t (s − s 0 ) 2 2 2

at =

0 − (102.667 ) v 2 − v 20 2 = = − 31.001 ft/s 2( s − s0 ) ( 2)( 170)

For braking without skidding µ = µs , so that µsN = m |a t | Σ Ft = mat : − µs N = mat

µs = −

31.001 mat a = − t = W g 32.2

µ s = 0.963 W

(b) Stopping distance with skidding. Use µ = µ k = ( 0.80 )( 0.963 ) = 0.770 ΣF = mat : µk N = −mat at = −

µkN m

= − µk g = −24.801 ft/s 2

Since acceleration is constant, 2

( s − s0 ) =

0 − (102.667) v 2 − v02 = 2 at (2 )(− 24.801)

s − s0 = 212 ft W

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 9.

For the thrust phase,

ΣF = ma : Ft − W = ma =

W a g

F   2  − 1 = 289.8 ft/s2 a = g  t − 1 = ( 32.2) W   0.2  At t = 1 s, v = at = ( 289.8 )(1) = 289.8 ft/s y =

1 2 1 2 at = ( 289.8)( 1) = 144.9 ft 2 2

For the free flight phase, t > 1 s. a = − g = − 32.2 ft/s v = v1 + a ( t − 1 ) = 289.8 + ( − 32.2 ) (t − 1) At v = 0,

t −1=

289.8 = 9.00 s, t = 10.00 s 32.2

v 2 − v12 = 2a ( y − y1) = −2 g ( y − y1 ) 0 − ( 289.8) v 2 − v12 =− = 1304.1 ft 2g ( 2)( 32.2) 2

y − y1 = − (a)

ymax = h = 1304.1 + 144.9

(b) As already determined,

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

h = 1449 ft W t = 10.00 s W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 10.

Kinematics: Uniformly accelerated motion. ( x0 = 0, v0 = 0 ) x = x0 + v 0t +

1 2 at , 2

or

a =

2x ( 2 )( 10) = 1.25 m/s2 = 2 t (4 )2

ΣFy = 0: N − P sin 50° − mg cos20° = 0 N = P sin 50° + mg cos 20° Σ Fx = ma : P cos 50° − mg sin 20° − µ N = ma or P cos50 ° − mg sin 20 ° − µ ( P sin 50 ° + mg cos 20 °) = ma P =

ma + mg (sin 20 ° + µ cos 20 °) cos50 ° − µ sin 50 °

For motion impending, set a = 0 andµ = µ s = 0.30. P =

( 40)( 0 ) + ( 40) ( 9.81)( sin 20° + 0.30cos 20° ) cos 50° − 0.30sin 50°

= 593 N

For motion with a = 1.25 m/s 2, use µ = µ k = 0.25. P=

( 40) (1.25) + ( 40)( 9.81)( sin 20° + 0.25cos 20°) cos50° − 0.25sin 50°

P = 612 N W

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 11.

Calculation of braking force/mass ( Fb / m ) from data for level pavement. v0 = 100 km/hr = 27.778 m/s v 2 v 02 − = a ( x − x0 ) 2 2 a=

0 − ( 27.778) v 2 − v02 = 2( x − x0) (2 )(60 )

2

= − 6.43 m/s2 ΣFx = ma : − Fbr = ma Fbr = −a = 6.43 m/s2 m (a) Going up a 6° incline. (θ = 6°) ΣF = ma : − Fbr − mg sin θ = ma a=−

Fbr − g sin θ m

= −6.43 − 9.81sin 6° = −7.455 m/s2 2

0 − ( 27.778) v 2 − v02 = x − x0 = 2a (2 )( −7.455 )

x − x0 = 51.7 m W (b) Going down a 2% incline. ( tanθ = − 0.02, θ = − 1.145° ) ΣF = ma : − Fbr − mg sin θ = ma F a = − br − g sin θ m = − 6.43 − 9.81sin( −1.145°) = − 6.234 m/s2 2

x − x0 =

0 − ( 27.778) v 2 − v02 = 2a ( 2 )(− 6.234 )

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

x − x0 = 61.9 m W

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 12.

Let the positive directions of xA and x B be down the incline. Constraint of the cable:

x A + 3 xB = constant

a A + 3a B = 0

or

1 aB = − aA 3

For block A:

ΣF = ma : mA g sin 30° − T = mA aA

For block B:

Σ F = ma : mB g sin 30° − 3T = m B a B = − m B a A (2)

Eliminating T and solving for

( 3mAg

(1)

aA , g

m   − mB g ) sin 30° =  3m A + B  a A 3  

aA ( 3 m A − mB )sin 30 ° (30 − 8) sin 30 ° = = = 0.33673 g 3m A + mB / 3 30 + 2.667

(a) a A = (0.33673) (9.81 ) = 3.30 m/s2 aB = −

1 (3.30 ) = −1.101 m/s 2 3

a A = 3.30 m/s2

30° W

a B = 1.101 m/s 2

30° W

(b) Using equation (1),  a  T = mA g  sin 30° − A  = ( 10)( 9.81)( sin 30° − 0.33673) g   T = 16.02 N W

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 13.

Let the positive directions of x A and xB be down the incline. Constraint of the cable:

x A + 3xB = constant 1 aB = − a A 3

aA + 3 aB = 0

ΣFy = 0: N A − mA g cos30° = 0

Block A:

ΣFx = ma : mA g sin 30 ° − µN A − T = mAa A Eliminate NA . mA g ( sin 30° − µ cos 30°) − T = mA aA ΣFy = 0: N B − mB g cos30° = 0

Block B:

Σ F = ma:

mB gsin 30° + µ NB − 3 T = mB aB = −

m Ba A 3

Eliminate NB . m B g ( sin 30° + µ cos30° ) − 3T = −

mB a A 3

Eliminate T.

( 3mAg − mB g ) sin 30° − µ ( 3m Ag + mB g ) cos30° =

mB    3m A + a A 3  

Check the value of µ s required for static equilibrium. Set a A = 0 and solve for µ.

µ =

( 3m A − m B ) sin 30° ( 3mA + mB ) cos30°

=

(75 − 20) tan 30° = 0.334. ( 75 + 20)

Since µ s = 0.25 < 0.334, sliding occurs. Calculate

aA for sliding. Use µ = µ k = 0.20. g continued

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

(3mA − mB ) sin 30° − µ ( 3mA + mB )cos 30° aA = g 3m A + m B / 3 =

(a)

(30 − 8 )sin 30° − (0.20 )(30 + 8 )cos30° 30 + 2.667

= 0.13525

aA = (0.13525 )(9.81 ) = 1.327 m/s 2

a A = 1.327 m/s2

30° W

1 aB = −  ( 1.327) = − 0.442 m/s 2 3

a B = 0.442 m/s2

30° W

(b) T = m Ag ( sin 30° − µ cos 30° ) − m Aa A = (10 )(9.81)( sin 30° − 0.20cos 30° ) − (10 )(1.327 ) T = 18.79 N W

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 14.

Data:

mA =

55000 lb = 1708.1 lb ⋅ s2 / ft 2 32.2 ft/s

mB =

44000 lb = 1366.5 lb ⋅ s2 / ft 32.2 ft/s2

v0 = − 55 mi/h = − 80.667 ft/s (a) Use both cars together as a free body. Consider horizontal force components only. Both cars have same acceleration.

∑ Fx = ∑ max : − Fb − Fb = mA ax + mB ax ax =

Fb + Fb 7000 + 7000 2 = = 4.5534 m/s mA + mB 1708.1 + 1366.5

ax = v

dv dx

0 xf ∫ 0 a x dx = ∫ v0 v dv

ax x f =

v02 2

v2 ( −80.667 ) = − xf = − 0 = − 751 ft 2a x ( 2)( 4.5534) 2

715 ft to the left W (b) Use car A as free body. Fc = coupling force.

∑ Fx = ∑ max : Fc − Fb = mA ax Fc = mA ax − Fb = (1708.1)( 4.5534 ) + 7000 = 778 lb F c = 778 lb tension W

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 15.

Data:

mA = mB =

55000 lb 32.2 ft/s 2 44000 lb 32.2 ft/s

2

= 1708.1 lb ⋅ s2 / ft = 1366.5 lb ⋅ s2 / ft

v0 = − 55 mi/h = − 80.667 ft/s (a) Use both cars together as a free body. Consider horizontal force components only. Both cars have same acceleration.

∑ Fx = ∑ max : − Fb − Fb = mA ax + mB ax ax =

Fb 7000 2 = = 2.2767 m/s m A + mB 1708.1 + 1366.5

ax = v

dv dx

0 xf ∫ 0 a x dx = ∫ v0 v dv

ax x f =

v02 2

v2 ( −80.667 ) = xf = − 0 = − 1429 ft 2a x ( 2)( 2.2767) 2

1429 ft to the left W (b) Use car B as a free body. Fc = coupling force.

∑ Fx = ∑ max : − Fc = mB ax − Fc = (1366.5)( 2.2767) = 3110 lb Fc = 3110 lb. compression W

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 16.

Constraint of cable: 2 xA + ( xB − xA ) = xA + xB = constant. a A + aB = 0,

or

aB = −aA

Assume that block A moves down and block B moves up. Σ Fy = 0:

Block B:

N AB − WB cos θ = 0

ΣFx = ma: − T + µ N AB + WB sin θ =

WB aB g

Eliminate N AB and a B. −T + WB (sin θ + µ cos θ ) = WB

aB a = −WB A g g

ΣF y = 0: N A − N AB − W A cos θ = 0

Block A:

N A = N AB + W A cos θ = ( WB + WA ) cos θ ΣFx = m Aa A : − T + WA sin θ − FAB − FA = −WB (sinθ + µ cos θ ) − WB

aA + WA sin θ − µWB cos θ g

−µ ( W B + W A) cosθ = W A

(WA

WA aA g

aA g

− WB ) sinθ − µ (WA + 3WB ) cos θ = (W A + WB )

aA g

Check the condition of impending motion.

µ = µs = 0.20,

aA = aB = 0,

θ = θs

(W A − W B )sinθ s − 0.20 (W A + 3W B )cosθ s

=0

continued

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

tan θs =

0.20 (WA + 3WB ) (0.20 )(128 ) = = 0.40 WA − WB 64

θ s = 21.8 ° < θ = 25 °. The blocks move. Calculate

aA using µ = µk = 0.15 and θ = 25 °. g aA (W A − W B ) sin θ − µk (W A + 3W B ) cos θ = g WA + WB =

64sin 25 ° − (0.15 )(128 ) cos 25 ° 96

= 0.10048

a A = (0.10048 )(32.2 ) = 3.24 ft/s2

(a) aB = − 3.24 ft/s 2 (b)

T = WB ( sin θ + µ cos θ ) + WB

a B = 3.24 ft/s 2

25° !

aA g

= 16 ( sin 25° + 0.15 cos 25° ) + (16 )( 0.10048) T = 10.54 lb !

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

COSMOS: Complete Online Solutions Manual Organization System

Chapter 12, Solution 17.

Constraint of cable: 2 x A + ( xB − x A) = xA + xB = constant. a A + a B = 0,

or

a B = −a A

Assume that block A moves down and block B moves up. Block B:

ΣFy = 0: N AB − WB cosθ = 0 ΣF x = ma x : −T + µ N AB + W B sinθ =

WB aB g

Eliminate N AB and aB . −T + WB (sin θ + µcos θ ) = WB

Block A:

aB a = −WB A g g

ΣFy = 0: N A − N AB − WA cosθ + P sin θ = 0 N A = N AB + WA cosθ − P sin θ = ( WB + W A) c osθ − P sin θ

Σ Fx = mA aA : − T + WA sin θ − FAB − FA + Pcos θ = −WB ( sinθ + µ cos θ ) − WB

aA + W A sin θ − µW B cos θ g

−µ (WB + W A )cos θ + µP sin θ + P cos θ = W A

(W A − W B )sin θ

WA a g A

aA g

− µ (W A + 3W B )cos θ + P ( µsin θ + cos θ ) = (W A + W B )

Check the condition of impending motion.

µ = µ s = 0.20, a A = aB = 0, θ = 25°

(WA − WB )sin θ

− µs (WA + 3WB )cos θ + Ps ( µs sin θ + cos θ ) = 0 continued

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

aA g

COSMOS: Complete Online Solutions Manual Organization System

Ps =

=

µs ( W A + 3WB ) cosθ − (W A − W B ) sin θ µs sin θ + cos θ

(0.20 )(128 )cos 25 ° − 64 sin 25 ° 0.20 sin 25° + cos 25 °

= − 3.88 lb < 10 lb

Blocks will move with P = 10 lb. Calculate

aA using µ = µk = 0.15, θ = 25° , and...


Similar Free PDFs