Wastewater Microbiology By Gabriel Bitton PDF

Title Wastewater Microbiology By Gabriel Bitton
Author Saeed Aghajani
Pages 765
File Size 6.7 MB
File Type PDF
Total Downloads 77
Total Views 467

Summary

WASTEWATER MICROBIOLOGY Third Edition WASTEWATER MICROBIOLOGY Third Edition GABRIEL BITTON Department of Environmental Engineering Sciences University of Florida, Gainesville, Florida A JOHN WILEY & SONS, INC., PUBLICATION This book is printed on acid-free paper. W 1 Copyright # 2005 by John Wi...


Description

WASTEWATER MICROBIOLOGY Third Edition

WASTEWATER MICROBIOLOGY Third Edition

GABRIEL BITTON

Department of Environmental Engineering Sciences University of Florida, Gainesville, Florida

A JOHN WILEY & SONS, INC., PUBLICATION

This book is printed on acid-free paper. W 1 Copyright # 2005 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organisation or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom. For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format. Library of Congress Cataloging-in-Publication Data: Bitton, Gabriel. Wastewater microbiology / Gabriel Bitton. - - 3rd ed. p. ; cm. Includes bibliographical references and index. ISBN 0-471-65071-4 (cloth) 1. Sanitary microbiology. 2. Water--Microbiology. 3. Sewage--Microbiology. [DNLM: 1. Sewage--microbiology. 2. Water Microbiology. 3. Safety Management. 4. Water Purification--methods. QW 80 B624w 2005] I. Title. QR48.B53 2005 628.30 010 579--dc22 2004019935 Printed in the United States of America 10 9 8

7 6 5 4

3 2 1

to Julie and Natalie

CONTENTS Preface

ix

Preface to the First Edition

xi

Preface to the Second Edition PART A. 1. 2. 3.

The Microbial World Microbial Metabolism and Growth Role of Microorganisms in Biogeochemical Cycles

PART B. 4. 5. 6.

FUNDAMENTALS OF MICROBIOLOGY

xiii 1 3 45 75

PUBLIC HEALTH MICROBIOLOGY

107

Pathogens and Parasites in Domestic Wastewater Microbial Indicators of Fecal Contamination Water and Wastewater Disinfection

109 153 173

PART C.

MICROBIOLOGY OF WASTEWATER TREATMENT

211

7. Introduction to Wastewater Treatment 8. Activated Sludge Process 9. Bulking and Foaming in Activated Sludge Plants 10. Processes Based on Attached Microbial Growth 11. Waste Stabilization Ponds 12. Sludge Microbiology 13. Anaerobic Digestion of Wastewater and Biosolids 14. Biological aerosols and Bioodors from Wastewater Treatment Plants

213 225 259 291 307 321 345

PART D.

395

15. 16. 17.

Microbiological Aspects of Drinking Water Treatment Microbiological Aspects of Drinking Water Distribution Bioterrorism and Drinking Water Safety

PART E. 18.

MICROBIOLOGY OF DRINKING WATER TREATMENT

BIOTECHNOLOGY IN WASTEWATER TREATMENT

Pollution Control Biotechnology

371

397 419 457 471 473 vii

viii

CONTENTS

PART F. 19. 20.

Fate of Xenobiotics and Toxic Metals in Wastewater Treatment Plants Toxicity Testing in Wastewater Treatment Plants Using Microorganisms

PART G.

21. 22. 23.

FATE AND TOXICITY OF CHEMICALS IN WASTEWATER TREATMENT PLANTS

MICROBIOLOGY AND PUBLIC HEALTH ASPECTS OF WASTEWATER EFFLUENTS AND BIOSOLIDS DISPOSAL AND REUSE

Public Health Aspects of Wastewater and Biosolids Disposal on Land Public Health Aspects of Wastewater and Biosolids Disposal in the Marine Environment Wastewater Reuse

499 501 527

545 547 573 589

References

609

Index

729

PREFACE

I would like to mention some of the changes and additions that have been included in the third edition of Wastewater Microbiology. In general, every chapter of the book has been revised (up to July 2004) to include the latest developments in the field, and I will highlight only the major ones. A review of the most important molecular techniques has been added to Chapter 1, while the most recent methodology for measuring microbial biomass in environmental samples is described in Chapter 2. New developments in enhanced biological phosphorus removal (EBPR) are covered in Chapter 3. Chapter 4 covers new findings on old and emerging (e.g., Helicobacter pylori, Cyclospora, Microsporidia) microbial pathogens and parasites. Much progress has been made concerning the detection of Cryptosporidium and Giardia in environmental samples, including wastewater. The improved methodology is also covered in Chapter 4. As regards disinfection of water and wastewater, research efforts are now focusing on UV disinfection in industrialized countries and on the use of solar radiation in developing countries (Chapter 6). Armed with new molecular tools and microsensor/microelectrode technology, investigators are making progress in understanding the microbial ecology and the surface properties of activated sludge flocs. The methodology used is similar to that used in biofilms. These advances will help us to better understand the flocculation process in activated sludge (Chapter 8). Concerning bulking and foaming in activated sludge plants, most of the recent studies have focused on the characterization and phylogeny of filamentous microorganisms (Chapter 9). In the last few years we have witnessed an increased interest in biofilm microbiology. Biofilms develop on biological and nonbiological surfaces and are ubiquitous in natural aquatic environments and engineered systems (e.g., fixed-film bioreactors). Their beneficial role in fixed-film bioreactors has been known for years (chapter 10). However, the impact of biofilms on drinking water distribution systems has been the subject of increased research activity around the world (chapter 16). This interest is further heightened by the findings that biofilms are the source of medical problems such as dental plaques or colonization of artificial implants, leading to increased rate of infection in patients. The discovery of communication among members of the biofilm community (i.e., quorum sensing using signaling chemicals such as homoserine lactones) may lead to potential means of controlling biofouling of surfaces. ix

x

PREFACE

Chapter 13 shows that new procedures, particularly molecular techniques, have helped shed light on the phylogeny of methanogens and other Archaea. Part D (Microbiology of Drinking Water Treatment) of the third edition now comprises three chapters instead of two as in the second edition. The third chapter (Chapter 17) introduces the reader to bioterrorism microbial agents and their potential impact on drinking water safety. In Chapter 18 (Biotechnology of Waste Treatment: Pollution Control Biotechnology), I have added some information about membrane bioreactors (MBR technology), while in Chapter 21, new developments in the area of bioremediation have been included. Finally, in Chapter 23 (Wastewater Reuse), I have made an attempt to introduce the reader to the microbiological aspects of the treatment of wastewater effluents by natural and constructed wetlands and by the use of attached algae for polishing wastewater effluents. Since the World Wide Web is increasingly becoming an integral part of the learning process at education institutions, I have added some Web resources to each chapter of the book to help students increase their knowledge or satisfy their curiosity about topics discussed in a given chapter. I have also included questions at the end of each chapter. These questions can help students in studying the material or can be used as homework. I thank Jorge Gomez Moreno for drawing several of the new figures for the third edition of this book. His attention to detail is much appreciated. I am grateful to Nancy, Julie, Natalie, Jonathan, my entire family, and friends for their love and moral support. GABRIEL BITTON Gainesville, Florida

PREFACE TO THE FIRST EDITION Numerous colleagues and friends have encouraged me to prepare a second edition of Introduction to Environmental Virology, published by Wiley in 1980. Instead, I decided to broaden the topic by writing a text about the role of all microorganisms in water and wastewater treatment and the fate of pathogens and parasites in engineered systems. In the 1960s, the major preoccupation of sanitary engineers was the development of wastewater treatment processes. Since then, new research topics have emerged and emphasis is increasingly placed on the biological treatment of hazardous wastes and the detection and control of new pathogens. The field of wastewater microbiology has blossomed during the last two decades as new modern tools have been developed to study the role of microorganisms in the treatment of water and wastewater. We have also witnessed dramatic advances in the methodology for detection of pathogenic microorganisms and parasites in environmental samples, including wastewater. New genetic probes and monoclonal antibodies are being developed for the detection of pathogens and parasites in water and wastewater. Environmental engineers and microbiologists are increasingly interested in toxicity and the biodegradation of xenobiotics by aerobic and anaerobic biological processes in wastewater treatment plants. Their efforts will fortunately result in effective means of controlling these chemicals. The essence of this book is an exploration of the interface between engineering and microbiology, which will hopefully lead to fruitful interactions between biologists and environmental engineers. The book is divided into five main sections, which include fundamentals of microbiology, elements of public health microbiology, process microbiology, biotransformations and toxic impact of chemicals in wastewater treatment plants, and the public health aspects of the disposal of wastewater effluents and sludges on land and in the marine environment. In the process microbiology section, each biological treatment process is covered from both the process microbiology and public health viewpoints. This book provides a useful introduction to students in environmental sciences and environmental engineering programs and a source of information and references to research workers and engineers in the areas of water and wastewater treatment. It should serve as a reference book for practicing environmental engineers and scientists and for public health microbiologists. It is hoped that this information will be a catalyst for scientists and engineers concerned with the improvement of water and wastewater treatment and with the quality of our environment. I am very grateful to all my colleagues and friends who kindly provided me with illustrations for this book and who encouraged me to write Wastewater Microbiology. I will always be indebted to them for their help, moral support, and good wishes. I am indebted to my graduate students who have contributed to my interest and knowledge in the xi

xii

PREFACE TO THE FIRST EDITION

microbiology of engineered systems. Special thanks are due to Dr. Ben Koopman for lending a listening ear to my book project and to Dr. Joseph Delfino for his moral support. I thank Hoa Dang-Vu Dinh for typing the tables for this book. Her attention to detail is much appreciated. Special thanks to my family, Nancy, Julie, and Natalie, for their love, moral support, and patience, and for putting up with me during the preparation of this book. GABRIEL BITTON Gainesville, Florida

PREFACE TO THE SECOND EDITION The second edition of Wastewater Microbiology incorporates the latest findings in a field covering a wide range of topics. During the past few years, we have witnessed significant advances in molecular biology, leading to the development of genetic probes, particularly the ribosomal RNA (rRNA) oligonucleotide probes, for the identification of wastewater microorganisms. The road is now open for a better identification of the microbial assemblages in domestic wastewater and their role in wastewater treatment. The use of genetic tools has also been expanded as regards the detection of pathogens and parasites (Chapter 4), and biotechnological applications for wastewater treatment (Chapter 17). Chapter 4 has been expanded due to the emergence of new pathogens and parasites in water and wastewater. The topic of drinking water microbiology has been expanded, and two chapters are now devoted to this subject. Chapter 15 deals with water treatment and Chapter 16 covers the microbiology of water distribution systems. New methodology that shows the heterogeneous structure of biofilms and their complex biodiversity includes nondestructive confocal laser-scanning microscopy in conjunction with 16S rRNA-targeted oligonucleotide probes (Chapter 16). The topic of wastewater and biosolids disposal on land and in receiving waters has also been expanded and is now covered in two chapters (Chapters 20 and 21). New figures and tables have been added to further enhance the illustration of the book. Many old figures and graphs were redrawn to improve the visual aspect of the book. I am very grateful to the colleagues who reviewed the book proposal for their valuable suggestions concerning the second edition of Wastewater Microbiology. I am particularly grateful to my mentor and friend, Professor Ralph Mitchell, of Harvard University. As editor of the Wiley series in Ecological and Applied Microbiology, he offered me his full support in the undertaking of this project. I thank Dr. Charles Gerba of the University of Arizona for his continuous moral support and enthusiasm. I thank Dr. Robert Harrington, senior editor at Wiley, for enthusiastically endorsing this second edition of Wastewater Microbiology. A picture is worth a thousand words. I thank Dr. Christopher Robinson of the Oak Ridge Institute of Science and Education, and Dr. H.D. Alan Lindquist of the U.S. EPA for promptly and kindly sending me photomicrographs of Cryptosporidium parvum. I am grateful to Dr. Rudolf Amann of the Max-Planck Institute for Marine Microbiology, Bremen, Germany, for allowing me to use his excellent color pictures on the use of rRNA xiii

xiv

PREFACE TO THE SECOND EDITION

probes in wastewater microbiology, and to Dr. Trello Beffa of the Universite de Neufchatel, Switzerland, for his scanning electron micrograph of compost microorganisms. Many thanks to Dr. Samuel Farrah and his students, Fuha Lu and ’Jerzy Lukasik, for supplying a scanning electron micrograph of Zooglea. I am grateful to Nancy, Julie, Natalie, my entire family, and friends for their love and moral support. GABRIEL BITTON Gainesville, Florida

PART A

FUNDAMENTALS OF MICROBIOLOGY

1 THE MICROBIAL WORLD 1.1 INTRODUCTION 1.2 CELL STRUCTURE 1.2.1 Cell Size 1.2.2 Cytoplasmic Membrane (Plasma Membrane) 1.2.3 Cell Wall 1.2.4 Outer Membrane 1.2.5 Glycocalyx 1.2.6 Cell Motility 1.2.7 Pili 1.2.8 Storage Products 1.2.9 Gas Vacuoles 1.2.10 Endospores 1.2.11 Eukaryotic Organelles 1.3 CELL GENETIC MATERIAL 1.3.1 DNA in Prokaryotes and Eukaryotes 1.3.2 Nucleic Acids 1.3.3 Plasmids 1.3.4 Mutations 1.3.5 Genetic Recombinations 1.3.6 Recombinant DNA Technology: Construction of a Genetically Engineered Microorganism (GEM) 1.3.7 Review of Selected Molecular Techniques 1.4 BRIEF SURVEY OF MICROBIAL GROUPS 1.4.1 Bacteria 1.4.2 Archaea 1.4.3 Eukaryotes 1.4.4 Viruses 1.5 WEB RESOURCES 1.6 QUESTIONS AND PROBLEMS

Wastewater Microbiology, Third Edition, by Gabriel Bitton Copyright # 2005 John Wiley & Sons, Inc.

3

4

THE MICROBIAL WORLD

1.1

INTRODUCTION

The three domains of life are bacteria, archaea, and eukarya (Fig. 1.1) (Rising and Reysenbach, 2002; Woese, 1987). Bacteria, along with actinomycetes and cyanobacteria (blue-green algae) belong to the prokaryotes while eukaryotes or eukarya include fungi, protozoa, algae, plant, and animal cells. Viruses are obligate intracellular parasites that belong to neither of these two groups. The main characteristics that distinguish prokaryotes from eukaryotes are the following (Fig. 1.2): 1. Eukaryotic cells are generally more complex than prokaryotic cells. 2. DNA is enclosed in a nuclear membrane and is associated with histones and other proteins only in eukaryotes. 3. Organelles are membrane-bound in eukaryotes. 4. Prokaryotes divide by binary fission whereas eukaryotes divide by mitosis. 5. Some structures are absent in prokaryotes: for example, Golgi complex, endoplasmic reticulum, mitochondria, and chloroplasts. Other differences between prokaryotes and eukaryotes are shown in Table 1.1. We will now review the main characteristics of prokaryotes, archaea, and eukaryotes. Later, we will focus on their importance in process microbiology and public health. We will also introduce the reader to environmental virology and parasitology, the study of the fate of viruses, and protozoan and helminth parasites of public health significance in wastewater and other fecally contaminated environments.

Bacteria Gram Positive Bacteria

Proteobacteria

Cyanobacteria

Cre...


Similar Free PDFs